Investigation of Design Speed Characteristics on Freeway Ramps Using SHRP2 Naturalistic Driving Data

Marcus Brewer
Jayson Stibbe

TRB Annual Meeting
January 15, 2019
Acknowledgement

- Based on research conducted on “Comparison of SHRP2 Naturalistic Driving Data to Geometric Design Speed Characteristics on Freeway Ramps”

- Sponsored by:
Introduction

• Existing ramp design guidelines based on practices from decades past
• Recent research conclusions based on more recent field data, but data often limited
• Current research project uses naturalistic data from SHRP2 NDS
• Objective: identify relationships between roadway characteristics and speed, based on speeds of SHRP2 drivers
Current Policies

- AASHTO Green Book
 - Section 10.9.6: Desirable for ramp design speeds to approximate low-volume highway running speed, but not always practical
 - Table 10.1: Applies to the sharpest or controlling ramp curve

<table>
<thead>
<tr>
<th>Highway design speed (mph)</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp design speed (mph)</td>
<td></td>
</tr>
<tr>
<td>Upper range (85%)</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>48</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>Middle range (70%)</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>33</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>45</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>Lower range (50%)</td>
<td>15</td>
<td>18</td>
<td>20</td>
<td>23</td>
<td>25</td>
<td>28</td>
<td>30</td>
<td>30</td>
<td>35</td>
<td>40</td>
</tr>
</tbody>
</table>
| **Corresponding minimum radius (ft)** | | | | | | | | | | | See Green Book Table 3-7
Current Policies

• AASHTO Green Book (7th Edition)
 – Section 10.9.6.2: Desirable for ramp design speeds to approximate low-volume highway running speed, but not always practical
 – Table 10.1: Applies to the sharpest or controlling ramp curve

<table>
<thead>
<tr>
<th>Highway design speed (mph)</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
<th>75</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp design speed (mph)</td>
<td></td>
</tr>
<tr>
<td>Upper range (85%)</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>Middle range (70%)</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>Lower range (50%)</td>
<td>15</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>25</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>Corresponding minimum radius (ft)</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

See Green Book Table 3-7
Current Policies

- Individual states
 - Online search of 20 states in NCHRP 15-56
 - 16 states had design manuals with text corresponding to *Green Book*
 - 11 states nominally the same or specifically referred to *Green Book*
 - 5 states were very similar but had some unique features also (e.g., Table 10-1 was reproduced using only values that were multiples of 5 mph)
Previous Research

• Variety of models predict ramp speed
 – Curves on loop ramps (NCHRP 3-105, NCHRP 17-45/HSM)
 – Advisory speeds on exit ramps (Venglar, et al)

• Models are based on:
 – Factors such as lane/shoulder width, curve radius, SCL type, etc.
 – Data from a limited number of ramps and/or vehicles
Data Collection Considerations

• Methods
 – Lidar
 – Road sensors
 – Instrumented vehicles

• Pros and cons
 – Tradeoffs between number of vehicles/sites and detail in dataset
Benefits of SHRP2 Dataset

• Data from 3,000+ participants in six states
• ~3,500 human-years of time series data

• Reduced data primarily used to analyze crashes and near-crash events, but can also be used for detailed driving data for a large sample of drivers on a wide variety of roadway segments
Site Data Collection

- **InSight Trip Density Maps**
 - Six participating states
 - Ramps with trips by 50-200 unique participants
 - Ramp configuration (e.g., diamond, loop, curve)
 - Entrance or exit ramp
Site Data Collection

• Google Earth
 – Same locations as InSight
 – GPS coordinates
 – Urban/rural
 – Confirm ramp type
 – Confirm origin/destination routes
Site Selection

- Identified 1686 ramps (>130 from each state)
 - About 1.4 million recorded trips
 - ~8 trips / participant / ramp
 - 173,000 unique participant-ramp combinations

- Filters and qualifiers removed:
 - Non-Interstate ramps, metered ramps, multiple ramps per interchange
 - Ramps with < 200 total trips, ramps with multiple LinkIDs
Site Selection

- Final list of 100 ramps, almost 11,000 participant-ramp combinations

<table>
<thead>
<tr>
<th>State</th>
<th>Configuration</th>
<th>Direction of Travel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Curve</td>
<td>Diamond</td>
</tr>
<tr>
<td>FL</td>
<td>816</td>
<td>2049</td>
</tr>
<tr>
<td>IN</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>NC</td>
<td>796</td>
<td>1770</td>
</tr>
<tr>
<td>NY</td>
<td>475</td>
<td>391</td>
</tr>
<tr>
<td>PA</td>
<td>406</td>
<td>523</td>
</tr>
<tr>
<td>WA</td>
<td>398</td>
<td>842</td>
</tr>
<tr>
<td>Total</td>
<td>2891</td>
<td>5725</td>
</tr>
</tbody>
</table>
Trip Data Collection

• Requested detailed SHRP2 NDS time series data for first trip by each unique participant on each ramp
 – Time series recorded each 0.1 s
 – Primary vehicle variables (e.g., speed, 3D acceleration and rotation rates)
 – Secondary vehicle variables (e.g., steering wheel position, pedal position)
• Dataset included 2 s before the ramp and after the ramp
Roadway Data Collection

- First option: SHRP2 RID (very few ramps available)
- Second option: Google Earth
 - Divided ramps into curve and tangent segments, measured lengths and radii
 - Measured lane/shoulder widths
 - GPS coordinates for begin/end of each segment
Final Dataset

- Removed trips with sensor errors and other features that prevented complete speed profile
- Combined trip data with roadway data into series of spreadsheets with one row per 0.1 s interval of data
- Reduced dataset contained:
 - 10,834 trips on 100 ramps
 - 1,731,753 individual speed readings (statistically significant)
Speeds on Curved Ramp Segments

- \(\nu_{\text{curve,ent}} = 0.51 \nu_{\text{fwy}} + 56.5R - 41.5R^2 + 0.68TC_{FF} - 1.07 \)
- \(\nu_{\text{curve,exit}} = 0.20 \nu_{\text{fwy}} + 79.9R - 61.1R^2 - 0.154Ramp_{pct} + 11.75TC_{FF} + 10.17TC_{SIG} + 12.30 \)

- Average speed on the curve
- Good for radii up to 0.7 mi
- Destination has an intuitive effect
Speeds on Tangent Ramp Segments

- \(v_{tangent,ent} = 0.84v_{PT} + 0.081Seg_{pct} - 2.29\, Next_C - 4.05\, Prev_C + 10.78 \)

- \(v_{tangent,exit} = 0.98v_{PT} - 0.115Seg_{pct} + 2.31\, Next_C + 0.83\, Prev_C + 0.60 \)

- Speed anywhere on the segment
- Establishes a baseline speed to begin the segment
Speed Profile on Ramp Proper

- $\nu_{\text{curve}} = \beta_0 + \beta_1 \nu_{PC} + \beta_2 R + \beta_3 R^2 + \beta_4 T C_{Si} + \beta_5 T C_{FF} + \beta_6 Pre_C + \beta_7 Pre_N + \beta_8 Next_C + \beta_9 Next_N$
- $\nu_{\text{tangent}} = \beta_0 + \beta_1 \nu_{PT} + \beta_2 T C_{Si} + \beta_3 T C_{FF} + \beta_4 Pre_C + \beta_5 Pre_N + \beta_6 Next_C + \beta_8 Next_N$

- Speed at quarter points of each segment
- Eqns used in series with calibrated coefficients (listed in paper)
Conclusions

• SHRP2 NDS has potential to be used (with other data sources) to develop realistic speed models related to geometric design characteristics

• Robust data source, with caveat that “too much” data can affect model development

• Curve radius, as expected, had great (non-linear) effect

• Destination more influential than origin on speed selection
Questions?

- Marcus Brewer
- m-brewer@tti.tamu.edu

- Paper # 19-05395 (this paper)
- Paper # 19-05389 (data processing paper led by Jayson Stibbe)