200-series Breakout: FMVSS No. 208 - Rear Seat Testing

Moderator: Warren Hardy, VT-CIB

Presenters:
Andrew Kemper, VT-CIB, Costin Untaroiu, VT-CIB
Crashworthiness and Occupant Protection Rear Seat Testing and Seating Location Selection

FMVSS 208 Rear Seat Testing Overview

Andrew R. Kemper
1.3 Select Late-Model Vehicles Spanning a Range of Potential Rear-Seat Safety Performance

1.3.1 Survey NCAP boneyard inventories
Surveyed 2018 NCAP boneyard inventories to determine which vehicles were available for inspection

1.3.2 Select sedans, SUV/crossovers, and Minivans for inspection
Screened the available vehicles and selected a more-limited set for further examination

Emphasis of this work was passenger vehicles - Sedans, SUV/Crossovers, and Minivans

- More rear-seat occupants are in Minivans (based on vehicle miles driven), but the majority of AIS3+ injuries for rear-seat occupants occur in sedans followed by SUVs for all ages. (Bose et al., 2017)
1.3 Select Late-Model Vehicles Spanning a Range of Potential Rear-Seat Safety Performance (from 23)

<table>
<thead>
<tr>
<th>Year</th>
<th>Model</th>
<th>Model</th>
<th>Year</th>
<th>Model</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>Buick</td>
<td>Envision</td>
<td>2018</td>
<td>Cadillac</td>
<td>Cadillac XT5</td>
</tr>
<tr>
<td>2017</td>
<td>Chrysler</td>
<td>Pacifica</td>
<td>2018</td>
<td>Honda</td>
<td>Odyssey</td>
</tr>
<tr>
<td>2017</td>
<td>Hyundai</td>
<td>Elantra</td>
<td>2017</td>
<td>Kia</td>
<td>Kia Niro</td>
</tr>
<tr>
<td>2018</td>
<td>Lincoln</td>
<td>Continental</td>
<td>2017</td>
<td>Mazda</td>
<td>CX-3</td>
</tr>
<tr>
<td>2018</td>
<td>Subaru</td>
<td>Impreza</td>
<td>2018</td>
<td>Subaru</td>
<td>Impreza</td>
</tr>
<tr>
<td>2017</td>
<td>Toyota</td>
<td>Prius</td>
<td>2018</td>
<td>Chevrolet</td>
<td>Traverse</td>
</tr>
</tbody>
</table>
1.3 Select Late-Model Vehicles Spanning a Range of Potential Rear-Seat Safety Performance

1.3.3 Examine vehicles’ package characteristics, restraint geometry, and seatbelt routing
Placed a representative ~50th percentile occupant in the second row of actual vehicles
Documented restraint and seat characteristics

- Belt anchor point locations, including D-rings and retractors
- Presence of load limiters, pretensioners, or inflatable seatbelts
- Seatbelt routing
- Seatback angle
- Seat bottom angle and length
- Seat pan geometry, including riser height
- Seat cushion stiffness
- Relative headrest position
Vehicle 15 (V_15)
Vehicle 15 (V_15)
1.3 Select Late-Model Vehicles Spanning a Range of Potential Rear-Seat Safety Performance

Faro Arm Data Collection:

- Vehicle origin and coordinate system established
- FARO point clouds taken for floor pan, riser, and seat pan
- FARO point clouds taken for seat bottom and back cushions
- FARO point clouds taken for the headrest
- Specific points taken for anchor points and retractorS
- Points taken for belts, buckles and anatomical landmarks with 50th-percentile subject positioned in left second-row seat
- Point clouds turned into surfaces (IGES files) for model generation
Vehicle 15 (V_15)
Vehicle 9 (V_9)
Vehicle 16 (V_16)
Vehicle 5 (V_5) Crash pulse shape/magnitude

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>Acceleration (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.006963</td>
<td>0</td>
</tr>
<tr>
<td>0.011</td>
<td>-30.02</td>
</tr>
<tr>
<td>0.018469</td>
<td>-30.02</td>
</tr>
<tr>
<td>0.018469</td>
<td>-21.16</td>
</tr>
<tr>
<td>0.080005</td>
<td>-21.16</td>
</tr>
<tr>
<td>0.106443</td>
<td>0</td>
</tr>
<tr>
<td>0.12</td>
<td>0</td>
</tr>
</tbody>
</table>
Vehicle 3 (V_3) Crash pulse shape/magnitude

Two-step Fit

<table>
<thead>
<tr>
<th>t (s)</th>
<th>A (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.006272</td>
<td>0</td>
</tr>
<tr>
<td>0.014202</td>
<td>-20.40</td>
</tr>
<tr>
<td>0.037707</td>
<td>-20.40</td>
</tr>
<tr>
<td>0.042994</td>
<td>-31.37</td>
</tr>
<tr>
<td>0.065994</td>
<td>-31.37</td>
</tr>
<tr>
<td>0.094725</td>
<td>0</td>
</tr>
<tr>
<td>0.12</td>
<td>0</td>
</tr>
</tbody>
</table>
Vehicle 16 (V_16) Crash pulse shape/magnitude

<table>
<thead>
<tr>
<th>Time (ms)</th>
<th>Acceleration (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.001</td>
<td>0</td>
</tr>
<tr>
<td>0.0015</td>
<td>-8.00</td>
</tr>
<tr>
<td>0.022899</td>
<td>-8.00</td>
</tr>
<tr>
<td>0.023075</td>
<td>-31.25</td>
</tr>
<tr>
<td>0.076931</td>
<td>-31.25</td>
</tr>
<tr>
<td>0.076931</td>
<td>0</td>
</tr>
<tr>
<td>0.12</td>
<td>0</td>
</tr>
</tbody>
</table>

Two-step Fit

<table>
<thead>
<tr>
<th>t (s)</th>
<th>A (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.001</td>
<td>0</td>
</tr>
<tr>
<td>0.0015</td>
<td>-8.00</td>
</tr>
<tr>
<td>0.022899</td>
<td>-8.00</td>
</tr>
<tr>
<td>0.023075</td>
<td>-31.25</td>
</tr>
<tr>
<td>0.076931</td>
<td>-31.25</td>
</tr>
<tr>
<td>0.076931</td>
<td>0</td>
</tr>
<tr>
<td>0.12</td>
<td>0</td>
</tr>
</tbody>
</table>
Down selection to approximately ~10 vehicles for FE modeling

Crash Performance Parameters

- Shoulder Belt Location on Clavicle
- Retractor (P/T, CFR + P/T)
- Seat Pan Ramp, Sub Bar, or Box at End of Ramp
- Box at end of Ramp
- Drop off at end of Ramp
- Lap Belt Angles
- Seat Foam Stiffness
- Sub Bar
- Foam Stiffness + Sub bar
- NCAP Crash Pulse (shape/magnitude)

Crash Performance

- Neck Loads
- Chest Deflection
- Lumbar Loads
- Pelvis Acceleration
- Overall

Score: 0 to 200 (larger=better)
Down selection to approximately ~10 vehicles for FE modeling

Crash Performance Parameters
- Shoulder Belt Location on Clavicle
- Retractor (P/T, CFR + P/T)
- Seat Pan Ramp, Sub Bar, or Box at End of Ramp
- Box at end of Ramp
- Drop off at end of Ramp
- Lap Belt Angles
- Seat Foam Stiffness
- Sub Bar
- Foam Stiffness + Sub bar
- NCAP Crash Pulse (shape/magnitude)

Crash Performance
- Neck Loads
- Chest Deflection
- Lumbar Loads
- Pelvis Acceleration
- Overall

Score: 0 to 200 (larger=better)
Down selection to approximately ~10 vehicles for FE modeling

Crash Performance Parameters

- Shoulder Belt Location on Clavicle
- Retractor (P/T, CFR + P/T)
- Seat Pan Ramp, Sub Bar, or Box at End of Ramp
- Box at end of Ramp
- Drop off at end of Ramp
- Lap Belt Angles
- Seat Foam Stiffness
- Sub Bar
- Foam Stiffness + Sub bar
- NCAP Crash Pulse (shape/magnitude)

Crash Performance

- Neck Loads
- Chest Deflection
- Lumbar Loads
- Pelvis Acceleration
- Overall

Score: 0 to 200 (larger=better)
Down selection to approximately ~10 vehicles for FE modeling

Submarining Parameters
- Seat or Floor Pan Ramp Angle
- Anti-Submarining Bar
- Seat A-Surface Pocket
- Seat Surface to Floor Height
- Seat Foam Stiffness and Structure Interaction
- Shoulder Belt Retractor (P/T, CFR, Combo)
- Lap Belt Angle
- Lap Belt P/T
- Lap/ Shoulder Belt Junction

Submarining Performance
Score: 6 to 100 (larger=better)
<table>
<thead>
<tr>
<th>Vehicle ID</th>
<th>Sub + Crash (Score 6 to 300)</th>
<th>Crash (Score 0 to 200)</th>
<th>Submarining (Score 6 to 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1</td>
<td>92</td>
<td>55</td>
<td>37</td>
</tr>
<tr>
<td>V_13</td>
<td>120</td>
<td>59</td>
<td>61</td>
</tr>
<tr>
<td>V_4</td>
<td>132</td>
<td>85</td>
<td>47</td>
</tr>
<tr>
<td>V_8</td>
<td>166</td>
<td>124</td>
<td>42</td>
</tr>
<tr>
<td>V_20</td>
<td>166</td>
<td>114</td>
<td>52</td>
</tr>
<tr>
<td>V_10</td>
<td>167</td>
<td>129</td>
<td>38</td>
</tr>
<tr>
<td>V_6</td>
<td>186</td>
<td>135</td>
<td>51</td>
</tr>
<tr>
<td>V_2</td>
<td>190</td>
<td>135</td>
<td>55</td>
</tr>
<tr>
<td>V_14</td>
<td>221</td>
<td>140</td>
<td>81</td>
</tr>
</tbody>
</table>

Worst

- V_6
- V_14

Best

- V_1
- V_13

Stakeholder Meeting – Draft Project Status Update
PART 2: Platform and ATD Modeling, and Vehicle Selection

2.2 Simulation of Vehicle-Specific Frontal NCAP and Reduced-Energy Tests using ATD FEMs

Simplified models developed as part of this research component will be used to simulate two crash pulses using two ATD FEMs

- Two Crash Pulses
 - NCAP pulse (56 kph) for the specific vehicles
 - Scaled down pulse (32 kph) for each model
- Two ATD FEMs
 - Humanetics THOR-M 50th LS Dyna model
 - Humanetics Hybrid III 50th LS Dyna model

Output: Results of up to 40 simulations (10x2x2)
PART 2: Platform and ATD Modeling, and Vehicle Selection

2.4 Selection of Vehicles to be used in Sled Testing

Select **5 to 7 vehicles** for subsequent physical testing based upon the initial down selection and modeling results.

Platforms will be selected from the master list based on performance rankings:

1) Lowest performing
2) Between the lowest and median performers
3) Median performing
4) Between median and highest performers
5) Highest performing
Part 3: Test Buck Preparation

Acquire 5 to 7 vehicles
- Vehicles will be retrieved from either NCAP boneyards, with NHTSA approval, or salvage operations

Test bucks will be fabricated from each acquired vehicle
- Only the passenger compartments, including the front-row seats but minus the doors and glass, will be retained
 - Seat and restraint system characteristics will be preserved
 - Passenger compartments will be reinforced so that they can be tested repeatedly
 - Roof structures will be modified to provide an overhead camera perspective
 - Bucks will be made to interface to the deck of the CIB ServoSled
Part 4: ATD Testing

4.3 Conduct Paired ATD Sled Tests using up to Five Vehicle Bucks and Two Speeds

CIB ServoSled will be used to simulate frontal crashes using the previously fabricated vehicle bucks

- Two Crash Pulses
 - NCAP pulse (56 kph) for specific vehicles
 - Scaled down pulse (32 kph) for each model
- Two ATDs (right and left outboard positions)
 - THOR-M 50th
 - Hybrid III 50th

Output: Responses from Hybrid III and THOR for 10-14 sled tests using 5-7 bucks and 2 speeds
Part 4: ATD Testing

4.1 Determine ATD Positioning Procedures for Seating behind the First Row

Available documentation has been obtained and reviewed

- NHTSA Memorandum Reports
- THOR-50th Percentile Male Metric Driver Dummy Seating Positioning Procedures
- Hybrid-III 5th Percentile Female Rear Seat Seating and Positioning Procedures
- THOR Frontal Passenger Seating Procedure Draft July 22 2015
- IIHS- Dummy Seating Procedure for Rear Outboard Positions

Positioning Procedure will be an iterative process involving VT, MGA, and NHTSA

- Procedures reconciled with dummy capabilities and the anticipated conformation a PMHS might assume in a similar seat
- Procedures will be applied using different vehicles to verify their efficacy
Part 4: ATD Testing

4.2 Establish Methods to Assess Submarining in the ATDs
THOR has an instrumented abdomen and bilateral dual-axis ASIS load cells
- Modest abdomen biofidelity
- Interpretation of instrumentation is not straightforward

THOR Abdomen
Part 4: ATD Testing

4.2 Establish Methods to Assess Submarining in the ATDs

Hybrid III has a simple foam abdominal that is not biofidelic
- No abdomen or pelvis instrumentation
Part 4: ATD Testing

4.2 Establish Methods to Assess Submarining in the ATDs

Dr. Hardy and students are exploring:

- ASIS load cells
- Electronic contact strips to indicate seatbelt pelvis interaction
- Frangible Abdomen for the Hybrid III

Hybrid III Frangible Abdomen
Part 4: ATD Testing

4.4 Assess Relative Vehicle Platform Safety Performance for Rear Seats

4.4.1 Evaluate metrics

Existing FMVSS 208 requirements

Additional Variables will also be assessed:

- Lower neck loads and moments
- Lumbar or T12 loads and moments
- Lap belt submarining & shoulder belt escape by the shoulder and/or torso
- Provisional IARVs for the abdomen will be computed
 - F_{max} (kN), C_{max} (%), $F_{max} * C_{max}$ (kN), Peak Penetration (mm), Penetration Speed (m/s), $V_{max} * C_{max}$ (m/s), and Peak $V * C$ (m/s)
Part 4: ATD Testing

4.4 Assess Relative Vehicle Platform Safety Performance for Rear Seats

4.4.2 Compare ATDs to FE
Compare general kinematics as well as computed injury metrics between ATDs and FE

Output: Summary comparison between test and model outcomes with examination of the nature of, and reasons for, observed differences

4.4.3 Summarize findings
Generate a report summarizing the findings of the Phase One work. The ATD tests will inform a series of PMHS sled tests that will be used to evaluate the dummy findings

Output: Summary of findings from both dummies from ten sled tests
Questions

Contact: Andrew R. Kemper (akemper@vt.edu)

JNCAP YAMASAKI and UESAKA, 2011
Crashworthiness and Occupant Protection Rear Seat Testing and Seating Location Selection

FMVSS 208 Rear Seat Modeling Overview

Costin D. Untaroiu
Rear Seat Geometry Reconstruction

Seats reconstructed from FARO scans with careful attention to seat pan geometry
Rear Seat Geometry Reconstruction

- Seat belt anchor points, D-ring, and retractor location noted
- Path of seat belt noted
Cars Modeled

<table>
<thead>
<tr>
<th></th>
<th>Car V_19</th>
<th>Car V_14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seat Angle (deg)</td>
<td>12.6</td>
<td>18.8</td>
</tr>
<tr>
<td>Stiffness (N/mm)</td>
<td>9.8</td>
<td>12.2</td>
</tr>
<tr>
<td>Pretensioner</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Material Properties: Seat Cushion

- Properties measured by quasi-static test for each seat
- Data fit to load curve of an average seat
- Stress-Strain curve approximated with average seat thickness
Boundary Conditions: Vehicle Crash Pulses

- Seatpan, seatback, belt anchors, and floor modeled as rigid and coupled
- NCAP full crash pulses applied as well as scaled down to $V_0=30\text{mph}$
Dummy Positioning

Step 1. Dummy limbs positioned with Marionette method

Step 2. Dummy settled with gravity
Car-to-Car Variation

Car V_19

Car V_14

Time = 44

Time = 150
Dummy/Pulse Variation (Car V_19)

Hybrid III NCAP

Hybrid III scaled down

THOR NCAP

THOR scaled down
HIC – HIII Predictions

Car V_19 NCAP Head-to-leg impact
HIC36 = 693

Car V_14 NCAP
HIC36 = 389

Car V_14 shows better performance than Car V_19 (in terms of HIC)
Car V_19 Scaled NCAP
HIC36 = 407

Car V_14 Scaled NCAP
HIC36 = 294

Car V_14 shows better performance than Car V_19 (in terms of HIC)
HIC – HIII vs. THOR

Car V_19 NCAP, HIII Head-to-leg impact
HIC36 = 693

THOR shows higher HIC values than HIII

Stakeholder Meeting – Draft Project Status Update
THOR shows higher HIC values than HIII

Stakeholder Meeting – Draft Project Status Update
Nij

<table>
<thead>
<tr>
<th></th>
<th>Car V_19</th>
<th>Car V_14</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hybrid III</td>
<td>0.54083</td>
<td>0.54984</td>
</tr>
<tr>
<td>Thor</td>
<td>0.52958</td>
<td>0.42779</td>
</tr>
<tr>
<td>Scaled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hybrid III</td>
<td>0.48736</td>
<td>0.4145</td>
</tr>
<tr>
<td>Thor</td>
<td>0.45769</td>
<td>0.28443</td>
</tr>
</tbody>
</table>
Car V_14 shows slightly better performance than Car V_19 (in terms of CIS)
Car V_19 shows slightly better performance than Car V_14 (in terms of CIS)
Chest Deflection – HIII Predictions

Car V_19 HIII

- Higher Chest Deflection in Car V_19 than Car V_14 in NCAP simulation

Car V_14 HIII

- Not much sensitivity in Car V_14 relative to pulse is caused probably due to the presence of the pretensioner.
Car V_19 NCAP

Car V_14 NCAP

Lumbar Load: HIII Predictions

Car V_14 shows lower peak of moment, but
Lumbar Load: HIII Predictions

Car V_19 NCAP

......, but higher peak of axial force than Car V_19
Questions

Contact: Costin D. Untaroiu (costin@vt.edu)
Thank You

200-series Breakout:
FMVSS No. 208 - Rear Seat Testing
Crashworthiness and Occupant Protection Rear-Seat Testing and Seating Location Selection

Seating Location Discussion

Warren N. Hardy
Current Rear-Seat Experience

• FMVSS No. 208 and NCAP do not include the evaluation of rear-seat occupant safety.

• Traditionally, there has been a lower percentage of rear-seat occupants compared to front-seat occupants on US roadways.

• 12.9% of person-trips had rear-seat occupants. (Trowbridge and Kent, 2009)

• 34.5 billion trips annually and 399 billion vehicle miles traveled with a rear-seat passenger indicates that the national at-risk exposure is high. (Bose et al., 2017)

• Rear-seat occupants account for 23% of occupants with injuries and 9% of fatalities. (NCSA, 2008)
Future Rear-Seat Experience

The percentage of rear seat passengers might increase dramatically.

When occupants have no driving involvement in certain or all conditions, passengers may elect to sit in the rear seat because of:

• Increased comfort
• Perceived safety
• Peace of mind
• Psychological predisposition (prior taxi experience)
• Desire to face the direction of travel

Rear-seat occupant protection can vary drastically between vehicles.
Rear-Seat Safety

Kuppa et al. (2005)
• 48 kph and 56 kph, front- and rear-seat frontal barrier tests
• 5th female and 50th male Hybrid III ATDs
• ATDs in the rear seat had considerably higher head, neck, and chest injury risks, and the percentage of tests that had injury measures that exceeded threshold levels was substantially higher for rear-seat occupants

Hu et al. (2015, 2017)
• 48 km/h, rear-seat frontal sled tests using two crash pulses: ‘soft’ and ‘severe’
• 6 yo, 5th female, and 95th male Hybrid III, and 50th male THOR-NT
• Three-point belt, four-point belt, retractor/buckle pretensioners, load limiters, inflatable three-point belt, bag in roof (BiR), and bag in front seat (SCsRAB)
• Severe crash pulse: Both advanced restraint systems reduced nearly all IARVs for all ATDs but THOR
Rear Seat Safety, PMHS

Michaelson et al. (2008)
• 48 km/h, rear seat frontal sled tests
• 3, ~50th male PMHS
• Standard three-point belt
• Vehicle seat representative of a 2004 mid-sized sedan
• All PMHS had severe chest injuries (AIS 4), cervical spine injuries (AIS 1-5), thoracic or lumbar spine injuries (AIS 1-3), and submarining

Sundararajan et al. (2011)
• 56 km/h rear seat frontal sled tests
• 4, ~50th male PMHS and 4 small female PMHS
• Compared rear-seat inflatable seatbelt relative to a standard three-point seatbelt
• The inflatable belt resulted in reduced head excursion, chest deflection, rib Fx, and neck injuries
Bilston, Du, and Brown, 2010

Sample
• NASS-CDS (1993-2007)
• All crash modes
• Model year 1990 and newer vehicles
• All restrained front and rear seat occupants, age 9+
• All injury levels

Analysis Method
• Matched-cohort

Conclusions
• “…rear seat occupant protection has not kept pace with front seat safety improvements.”
• Adults (16 years and older) are better protected in the front seat
• Adjusted rear to front risk ratios for AIS 3+ injury in adults range from 1.11-3.16 ($\alpha = 0.05$)
Durbin, Jermakian, Kallan, McCartt . . . 2015

Sample
• FARS and NASS-CDS (2007-2012)
• All crash modes
• Model year 2000 and newer vehicles
• All front and rear seat occupants
• No age restriction
• All injury levels

Conclusions
• “Findings of an elevated risk of death for rear row occupants . . . in the newest model year vehicles provides further evidence that rear seat safety is not keeping pace with advances in the front seat.”
• Vehicle model years ≥ 2007 have a relative risk of fatal injury for rear vs front seat occupants of 1.46 (α = 0.05)
• Older vehicle model years show no statistically significant difference

Analysis Method
• Logistic regression modeling
Mitchell, Bambach, and Toson, 2015

Sample
• Linked police-report, hospitalization, and emergency department presentation records in New South Wales, Australia (2001-2011)
• All crash modes
• No model year restriction
• All restrained front and rear seat occupants, age 9+
• All injury levels

Analysis Method
• Matched-cohort

Conclusions
• “Rear seat car passengers are sustaining injuries of a higher severity compared to front seat passengers travelling in the same vehicle, ...”
• The odds ratio of rear seat compared to front seat passengers measuring higher risk of injury severity is 1.10 (1.01-1.21, α = 0.05)
• When considering only passengers 51+ years old, the odds ratio is significantly higher at 2.02 (1.68-2.43)
Mitchell, Bambach, and Toson, 2015

Sample
• Linked police-report, hospitalization, and emergency department presentation records in New South Wales, Australia (2001-2011)
• All crash modes
• No model year restriction
• All restrained front and rear seat occupants, age 9+
• All injury levels

Analysis Method
• Matched-cohort

Conclusions
• Adjusted risk ratio of rear seat compared to front seat passenger abdomen, lower back, lumbar spine, and pelvis injuries is 2.81 (1.82-4.34)
Sample
• NASS-CDS (2001-2010)
• Frontal crashes
• Model year 1998 and newer vehicles
• All rear seat occupants, age 8+
• All injury levels

Analysis Method
• Descriptive epidemiology

Conclusions
• “...factors such as low rate of belt usage and unavailability of advanced safety features compromise the overall protections to [rear seat] victims involved in a crash.”
• “The highest incidence of serious injuries observed in the thorax region may be attributed to the general lack of supplementary restraint features (e.g. belt load limiters, airbags, pretensioners) in the rear seat configurations.”

Bose, Crandall, Forman, Longhitano . . . 2017
Tatem and Gabler, in progress

Sample
• FARS and NASS-CDS (1997-2015)
• Frontal crashes
• Model year 1998 and newer vehicles
• All restrained front and rear seat occupants, age 8+
• All injury levels

Analysis Method
Overall, the fact that the risk of injury in frontal collision is higher for rear-seat occupants than for front-seat occupants, especially in newer vehicles and older occupants, illustrates that there is a need for improved rear-seat safety restraint performance and evaluation.

Contact: Warren N. Hardy (whardy@vt.edu)
Thank You

200-series Breakout: Seating Location Selection
200-series Breakout: Novel Seating Configuration

Moderator: Warren Hardy, VT-CIB

Panelists:
• Joe Kanianthra, Active Safety Engineering LLC
• Priya Prasad, Auto Alliance
• Douglas Stein, Autoliv Inc.
• Kurt Driscoll, Faurecia Automotive Seating
• Amanda Prescott, Zoox Inc.
Crashworthiness and Occupant Protection Rear-Seat Testing and Seating Location Selection

Novel Seating Configurations Panel Discussion
There will be significant considerations when translating current FMVSS to apply to the novel seating arrangements anticipated in the future in a meaningful way. FMVSS 208 and 214 are among the most concerning.

- What are the obstacles?
- What are the knowledge gaps?
- What are the enabling factors?
- What are the solutions?
Thank You

200-series Breakout: Novel Seating Configuration