

Lessons Learned: VDOT Perspective

Virginia Pavement Recycling Workshop

November 27, 2012

Michael E. Wells, P.E.

VDOT Materials Division

Senior Pavement Engineer

Discussion

- What have we learned from our projects?
 - Project Development
 - Project Selection
 - Specifications
 - Project Delivery
 - Construction
 - Acceptance of Process

VDOT Recycling Projects

Additional Project Information

Year	District	County	Route	Treatment and Agent
2008	Richmond	Powhatan	SR 13	FDR w/cement
	Richmond	Powhatan	SR 6	FDR w/cement
	Salem	Franklin	SR 40	FDR w/Foam,Emulsion
2010	Richmond	Powhatan	US 60	FDR w/cement
2011	Richmond	Henrico	US 60	CIR w/emulsion
	Richmond	Prince George	SR 35	CIR w/emulsion
	Staunton	Augusta	IS 81	FDR, CIR, CCPR
2012	Hampton Roads	Isle of Wight	US 17	CIR w/Foam,emulsion
	Hampton Roads	Isle of Wight	Rte 620	FDR w/cement
	Fredericksburg	Richmond	SR 3	FDR w/cement
	Salem	Bedford	SR 24	FDR w/cement
	Richmond	Chesterfield	US 10	FDR w/cement

Goal of Project Selection

- Provide right fix
 - Identify
 - What projects are candidates
 - Rating Data
 - Verify
 - Pavement Investigation
 - Non-Destructive
 - Destructive
 - Certify

Early Project Selection

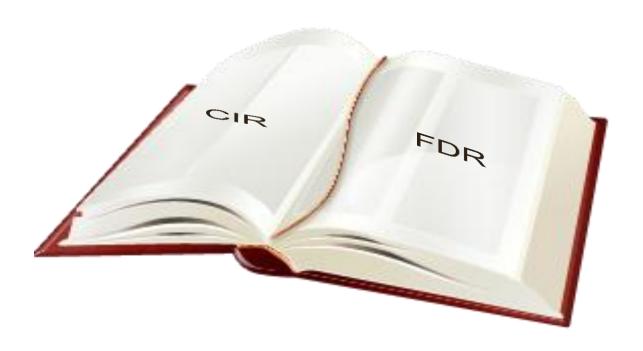
- 2008 and 2010 Some Project Review
 - FDR Projects
 - Pavement History and Rating Data
 - Geometric Review
 - Some coring
 - Some subgrade

Early Project Selection cont'd

- 2011 More Detailed Review
 - CIR (composite pavement SR 35 and US 60)
 - CIR, FDR, CCPR (IS 81)
 - Pavement History and Rating Data
 - Geometric Review
 - Higher Frequency of Coring
 - Subgrade
 - FWD
 - GPR (IS 81)

Current Project Selection

- 2012 Industry/VDOT initiative
 - Will be covered by Andy Babish, State Materials Engineer



Lessons Learned Project Selection

- Factors to consider when reviewing a project for recycling
 - Pavement History
 - Type of pavement failure
 - In-place material
 - Structural Condition
 - Material types (SM, IM, BM, other)
 - Thickness (uniform or variable)
 - Geometrics
 - Maintenance of Traffic

Specifications

Specification Development

- · 2008
 - No Official VDOT Specification for FDR
 - Project specific "General Notes"
 - Process
 - Additive Type and Percentage
 - Testing Requirements (Field)
 - Depth
 - Gradation
 - Proof Roll
 - "General" equipment criteria

Specification Development cont'd

- 2010
 - After 2008 Projects, VDOT Provision developed for FDR
 - Contractor must have
 - Experience performing this work (within 3 years and 50,000 sy)
 - Project reference list
 - QC Plan
 - Reviewed VDOT data and/or project site
 - Preconstruction Meeting prior to beginning
 - Mix Design Required (Cement Percentage)
 - Testing Requirements (Design and Field)
 - Also developed provision for CIR and CCPR

Specification Development cont'd

2011

- District modified CIR spec for SR 35 and US 60 based on composite pavement
 - Required engineered emulsion
 - Contractor must have
 - Technical rep on site at all times (2 years and 5 projects)
 - Qualified to do design, perform and oversee
 - QC Plan
 - Preconstruction Meeting prior to beginning
 - Mix Design Required
 - Testing Requirements (Design and Field)
 - Equipment Requirements
 - Weather Requirements

Current Specifications

- 2012 Industry/VDOT initiative
 - Will be covered by Andy Babish, State Materials Engineer

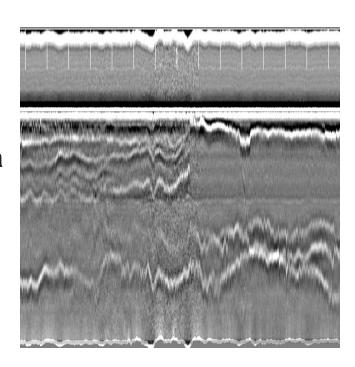
Lessons Learned Specifications

- Need to clearly identify expectations
 - Contractors role and responsibilities
 - Departments role and responsibilities
- How specific do you want to be?
 - Flexible versus Absolute requirement
 - Equipment requirements
 - Cement versus lime versus emulsion versus foamed
- Testing protocol
 - Which properties to measure (i.e. density, strength, additive content, depth)
- Seek Input from Resources (local, other states, ARRA, etc.)

Construction

Highlights

- Depth of In-Place Material
- Mix Design
- Additive Content
- Compaction Equipment
- Density
- Strength Testing
- Dust (FDR)
- Returning to Traffic
- Material Protection (CIR)
- Trench Widening


Depth of In-Place Material

Uniformity of depth

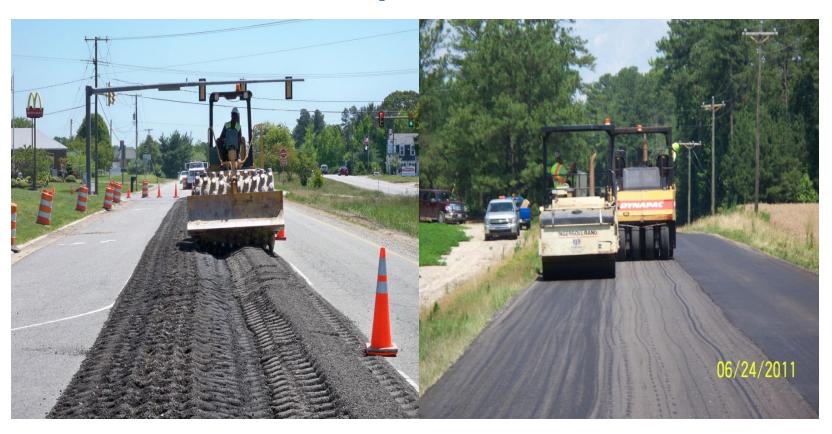
- Begin to end points of project
- Across Lane

Recommend

- Coring locations across lane width
- GPR
 - Education on how to interpret data

Mix Design

- Contractor must take sufficient material to develop
 - Establishes optimum additive content
 - Establishes density target
 - Make sure enough material is gathered throughout project to establish representative target(s)
- Labs capable of performing tests required?
 - Training


Additive Content

- How to measure/ensure consistent feed
 - Required automatic displays
 - Have used "tarp method" for FDR
 - Calculate daily yield
 - Uniform depth across pavement width (FDR)
- Frequent monitoring

Compaction Equipment

Equipment requirements different than conventional HMA placement

Density

- Overall, has not been an issue
 - Some issues on previous project
 - Cause not 100% defined
 - Speed of recycling?
 - Materials change?
 - Process change?
 - Aggressively pursue possible cause(s)

Strength Testing

- Sampling
 - Cores
 - "Box" Samples
 - Molded in lab and tested
 - Does this correlate to field cores?

Dust (FDR)

- Public Concern/Complaints
- Safety?

Returning to Traffic

- Same "day" or extended lane closure
 - Quality Impact?
 - Overall, no but…
 - Some deformation under heavy vehicles turning on CIR
 - Isolated raveling of FDR
 - Perform proof roll (FDR)

Material Protection (CIR)

- Protection Plan if exposed to excess moisture (i.e. heavy rain)
 - Required as part of QC Plan
- Did have a couple of potholes due to heavy rain storms prior to overlay

Trench Widening

- Investigate if existing material is suitable for incorporation into process
 - Must be accounted for as part of design
 - If not, add additional material or trench prior to recycling/reclaiming
- Remove existing vegetation

Acceptance of Process

Communication

- Technology being implemented on roads not previously considered
- Public Acceptance
- Stakeholder Acceptance (Dept and Industry)
- Training
- Performance Monitoring

Summary

- Do your homework
- Clearly define Specifications
- Train workforce
- Communicate with Construction Family
- Project Follow-up

Lessons Learned: VDOT Perspective

Virginia Pavement Recycling Workshop

November 27, 2012

Michael E. Wells, P.E.

VDOT Materials Division

Senior Pavement Engineer