The 7 Steps of In-Place Recycling Implementation by Public Agencies

Virginia Pavement Recycling Conference

Glen Allen, Virginia November 27, 2012

Sohila Bemanian, PE Parsons Transportation Group

Outline

The 7-Step Implementation Plan

Case Study (NDOT & Caltrans)

- Why CIR &FDR?
- Project Selection Criteria
- Pavement Thickness Design
- Mix Design
- Geometric Design
- Construction

Step 1: Task Force

- Establish a pavement recycling task force (TF) consisting of representatives from research, materials, construction, roadway design divisions as well as industry representatives such as , general and subcontractors, material suppliers, testing lab, and consultants with in-place recycling experience
- Appoint a TF leader for both agency and industry

Step 2: Goals & Objectives

- Define agency's objectives and quantify the benefits of in-place recycling
 - Conduct life-cycle cost analysis
 - Life-cycle assessment

Step 3: Training

- Provide training and workshops for the staff
 - NHI course, ARRA Manual
- Visit other agencies recycling projects under construction and learn from their experience
- Contact other agencies who have experience with inplace recycling

Step 4: Specifications & Project Selection Criteria

- Establish project selection criteria using the "right strategy, at the right time, on the right project" concept
- Use other DOTs specifications to develop customized specifications for your agency that meet your agency goals and objectives
- Identify several potential projects for in-place recycling. Start slowly and keep increasing the number of projects

Step 5: Construction

- Finalize the design and specifications
- Make sure the right field personnel are selected for construction management
- Require 2-hour mandatory just in—time training prior to the start of recycling
- Provide timely input to the field personnel when a problems arise

Step 6: Post Construction Meeting

- Conduct post-construction meeting with individuals involved with planning, design, and construction
 - Discuss the top 3 things that went right on the project
 - Discuss the top 3 things that went wrong on the project
 - Document lessons learned and improve specifications
 - Develop list of new projects
 - Provide a steady work flow to retain experienced contractor in your area

Step 7: Performance

- Monitor short term and long term performance using pavement management data
- Publish your result and share your success and lessons learned with others
- Update life-cycle cost analysis, life-cycle cost assessment, structural number selected for the inplace recycling layer

Result of Successful In-Place Recycling Implementation for 2011

	2011-CIR Projects in lane miles					
	CA	NV	UT	МĨ	\mathbb{D}	Total (lane miles)
Caltrans	250	235	120	31	8	
CA Local Agnecies	100					
						744

Outline

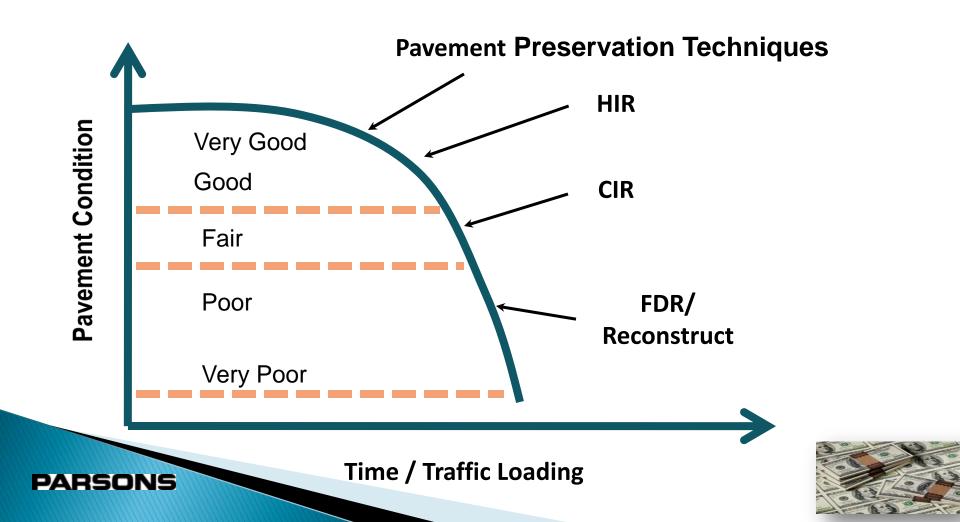
The 7-Step Implementation Plan

Case Study (NDOT & Caltrans)

- Why CIR &FDR?
- Project Selection Criteria
- Pavement Thickness design
- Mix design
- Geometric design
- Construction

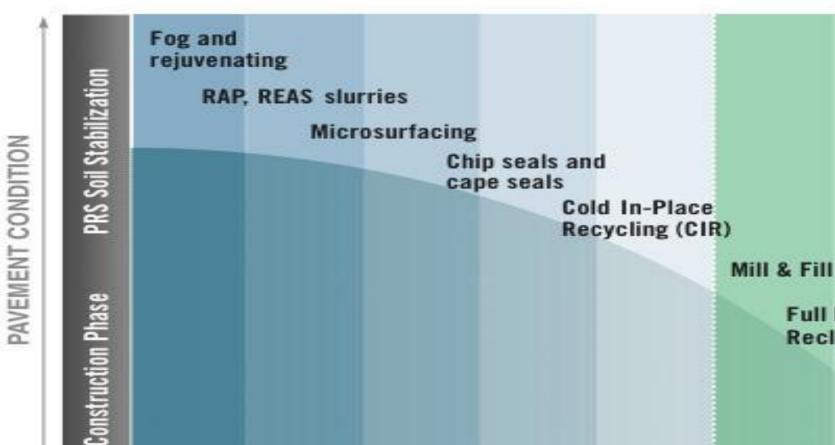
NV & CA Case Study: Why In-Place recycling?

Environmental


Economics

Engineering

Timing of Rehabilitation Techniques (The Right Project, at The Right Time, and The Right Strategy)



Pavement Preservation & Rehabilitation Tool Box

PAVEMENT PRESERVATION STRATEGIES

REHABILITATION STRATEGIES

Full Depth Reclamation

PAVEMENT LIFE

What is a good strategy for surface raveling?

www.betterroads.com

PARSONS

What is a good strategy for medium and wide transverse and block cracking?

What is a good strategy for alligator cracking?

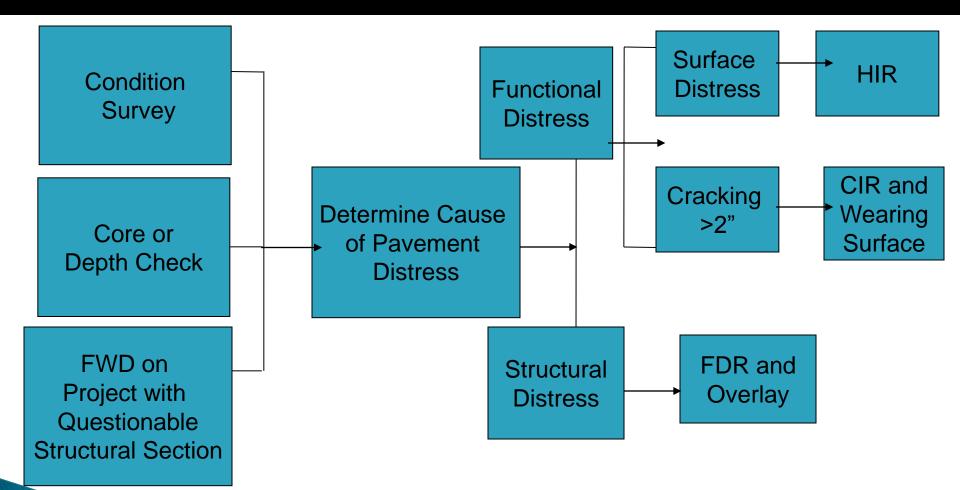
Project Selection Criteria

- Existing pavement condition and design
 - Distress type, level, and extent
 - Traffic loading

ARSONS

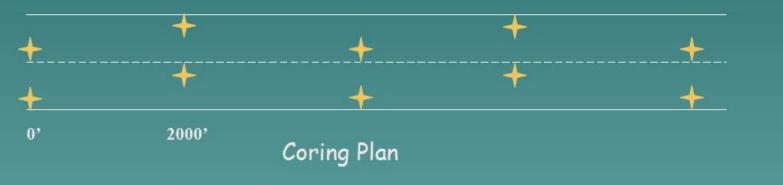
- 2. Environmental condition
- 3. Roadway geometry
- 4. Project site consideration

Additional Factors to Consider


(continued)

- 5. Initial funding constraint
- 6. Life-cycle cost based on long-term performance
- 7. Traffic control

PARSONS


Existing Pavement Evaluation

Engineering Requirements

Subsurface Investigation: Coring to determine pavement thickness

- Look for lift locations
- Digout thickness
- Deep lifts of asphalt concrete
- fabric

Joe Peterson, Caltrans, 2008 In-Place Recycling Presentation

Structural Layer Coefficient

FDR Method	Minimum Thickness of Riding Surface	Typical Structural Coefficient	
Mechanical	2" HMA	0.10 - 0.12	
Bituminous	Surface Treatment or Structural HMA	0.20 - 0.28	
Cement	Surface Treatment or Structural HMA	0.15 – 0.20	


tike Voth, FHWA, 2008 In-Place Recycling Presentation

Mix Design Process

1) RAP: Cores or Grindings from Project	Cores or Milling are crushed to passing 1"
2) Mixing	3 emulsion contents and H20 content are made
3) Compaction	Use Gyratory Compactor
4) Curing of Specimens	48 hours
5) Cured Specimens Measurements	2 sets: dry and soaked
6) Mix Design Selection	Determine optimum emulsion content

Project Selection Criteria

- Existing pavement condition and design
 - Distress type, level, and extent
 - Traffic Loading
- 2. Environmental condition
- 3. Roadway geometry
- 4. Project site consideration

2. Environmental Condition

(Climate conditions must be considered when selecting in-place recycling)

- Factors to consider
 - Good drainage is a MUST
 - Type and thickness of the wearing surface (slurry seal, double chip seal, hot mix overlay, and friction course)
 - PG grade binder

NCHRP Synthesis 421

Ranking of climates that can influence the choice of in-place recycling processes

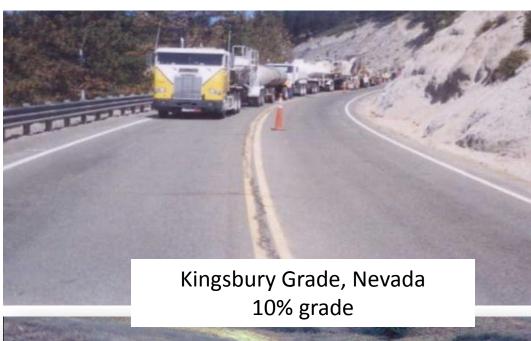
Climate	HIR	CIR	FDR
Cold/Wet	Fair	Good	Very Good
Hot/Wet	Good	Good	Very Good
Cold/Dry	Good	Very Good	Very Good
Hot/Dry	Very Good	Very Good	Very Good

PARSONS

Project Selection Criteria

- Existing pavement condition and design
 - Distress type, level, and extent
 - Traffic Loading

ARSONS


- 2. Environmental condition
- 3. Roadway geometry
- 4. Project site consideration

3. Roadway Geometry

- Profile grade
- > Drainage ditches
- Guard rail
- > Overhead
- Cross slope

PARSONS

Project Selection Criteria

- Existing pavement condition and design
 - Distress type, level, and extent
 - Traffic Loading

ARSONS

- 2. Environmental condition
- 3. Roadway geometry
- 4. Project site consideration

4. Project Site Consideration

Contractors availability

Contact ARRA - www.arra.org

Project length At least 4 miles for HIR and CIR

Construction season

Additional Factors to Consider

(continued)

- 5. Initial funding constraint
- Life-cycle cost based on long-term performance
- 7. Traffic control

PARSONS

Mill & Overlay vs. CIR & Overlay 93-AASHTO Design

3" Mill & 3" HMA

- Existing HMA (SN-0.2/inch)
- New HMA (SN-0.42/inch)
- Total SN-
- (3"*0.42)-3*0.2=0.66

3" CIR & 1.5" HMA

- 0.3-CIR (SN-0.3/inch)
- 0.42 New ACP (SN-0.42/inch)
- Total SN-
- (3*(0.3-0.2)+0.42*1.5=0.93)

Cost Comparison

3" Mill & 3" overlay

- ▶ 3″ Milling-\$1.5/ Sq. Yd.
- > 3" HMA- \$18/ Sq.Yd.
- Total cost for one mile (32' wide) = \$370 K

- 3" CIR & 1.5" overlay
- 3" CIR-\$4.5
- 1.5" HMA- \$9/ Sq.Yd.
- Total cost for one mile (32' wide)= \$253K

30% Cost decrease

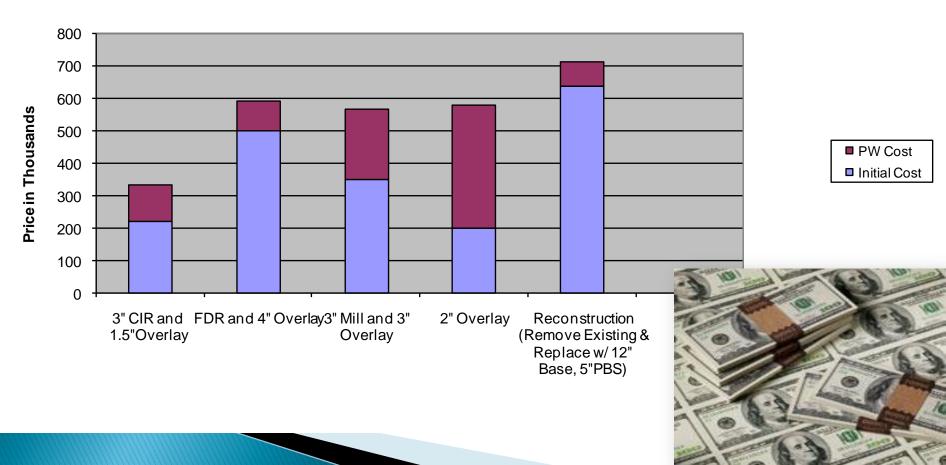
5. Initial Funding Constraint

(Nevada DOT Cost Comparison)

Category	ESALs	Strategy	Total structural number	Strategy Cost	Reduced Cost/ Mile	Change in SN
LOW	< 1 Million	2" Mill &fill	2"(0.35-0.18)= 0.34	625K	63%	(12%)
		3" CIR Double Chip Seal	3(0.28-0.18) =0.30	230K		
MEDIUM	> 1 Million < 3 Million	3" Mill 3" HMA	3"(0.35-0.18)=0.51	910K	37%	60%
		3" CIR 1.5" HMA	3" (0.28-0.18) +1.5" *0.35=0.82	570K		
HIGH	> 3 Million	3" Mill 6" HMA	(6")(0.35)-(3") (0.18)=1.56	1.82 M	28%	10%
		3" CIR 4" HMA	3(0.28-0.18) +4(0.35)=1.70	1.3 M		

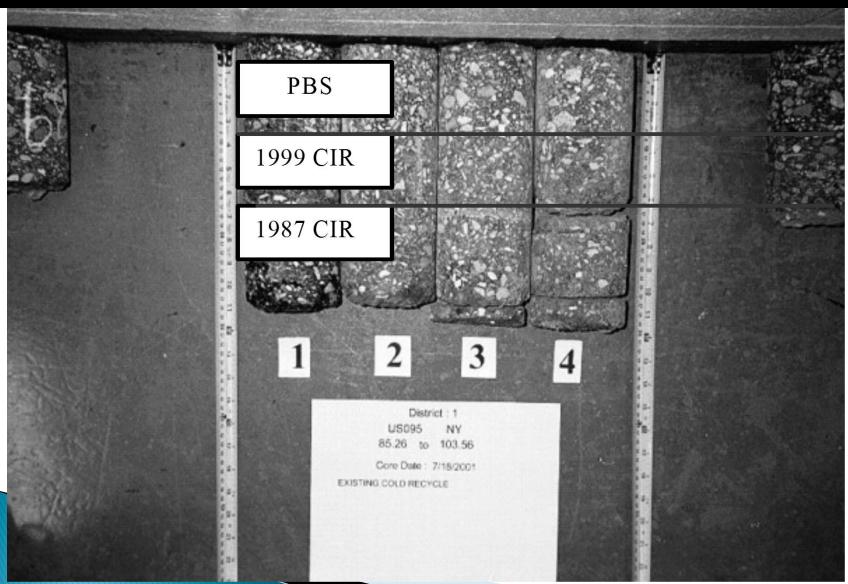
Additional Factors to Consider

(continued)


- Initial funding constraint
- 6. Life-cycle cost based on long-term performance
- 7. Traffic control

PARSONS

6. Life-cycle Cost Analysis Present Worth for Pavement Rehabilitation


State-of-the-Practice on CIR and FDR Projects NDOT, Nov. 21, 2005

Long-Term Performance 10-year Performance CIR and 2" Overlay Section, Reno, Nevada

Long-Term Performance 20-year Performance US-95 NV

Additional Factors to Consider

(continued)

- Initial funding constraint
- 6. Life-cycle cost based on long-term performance
- 7. Traffic control

PARSONS

7. Traffic Control

Extremely Important

Factors to consider:

- Day time vs. night time construction
- > ADT and type of traffic (cars vs. trucks)
- > Opening to traffic

ARSONS

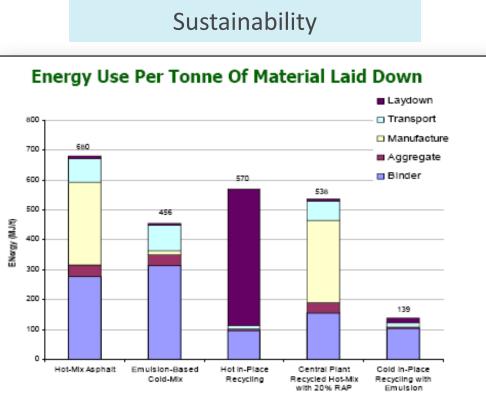
- Intersections and other stop and go
- Access to local business

CIR on I-80 in Nevada

I-80 at Pequop

Agency: NDOT District 3 Contractor: Road & Highway Builders Subcontractor: Valentine Surfacing 2007-2008

Lake Almanor, Caltrans Project-2011



Recommendations

- > Agencies cannot afford not utilizing HIR, CIR, and FDR rehabilitation strategies in their tool box
- Start slowly and get contractors involved early
- Continue improving the process

Conclusions HIR, CIR and FDR Meet the 3E Challenge

Source: The Environmental Road of the Future, Life Cycle Analysis by Chappat, M. and Julian Bilal. Colas Group, 2003, p.34

Ministry of Transportation Ministère des Transports

20-Yr CIR Performance

\$600M Cost-Saving with

Let's Create a Sustainable Future!

- Sohila Bemanian, PE
- **Parsons Transportation Group**
- **Carson City, Nevada**
- Sohila.bemanian@parsons.com
- (775) 297-6515

