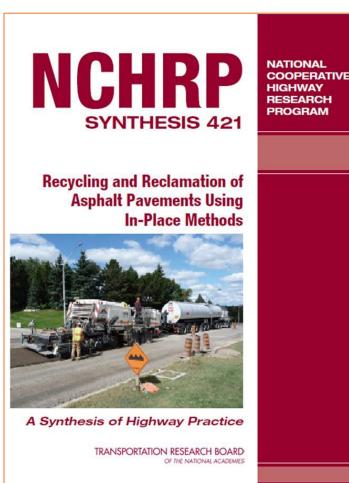


We bring innovation to transportation.

VDOT Pavement Recycling Research Overview

Virginia Pavement Recycling Conference November 26, 2012 Brian Diefenderfer, Ph.D., P.E.

Why VDOT Wants to Recycle


Economic

- Nevada DOT saved \$600 million over 20 years
- Other studies show 30-50 percent cost savings
- Environment
 - MTO (Ontario) estimated CIR process emits 50 percent less greenhouse gases
- Construction
 - Fix deterioration causes rather than symptoms
- FHWA recycled materials policy*

National Experiences

- 45 agencies responded to questionnaire on usage
 - 75% reported some recycling
 - Mostly low-volume routes
- Barriers include a lack of:
 - Specifications and project selection criteria
 - Standardized mix-design procedures
 - Engineering design inputs

VDOT Recycling Program

- 12 projects to date, approx. 75 lane miles
- Specifications and usage guidelines
 - Nearing completion
 - Iterative process = room for future improvements

Research

- Field and lab tests to assess performance
 - Field: Rut depth, ride quality, FWD
 - Lab: Dynamic modulus, flow number, resilient modulus, indirect tensile strength
- Documenting agency experiences

VDOT Recycling Projects

85

2008: SR 6, 13, 40
2010: U.S. 60
2011: U.S. 60, SR 35, I-81
2012: U.S. 17, SR 3, SR 10, SR 620, SR 24

I-81 Pavement Recycling Project

- AADT = 23,000 (28 percent trucks)
- 7.2 lane miles
- \$7.6 million

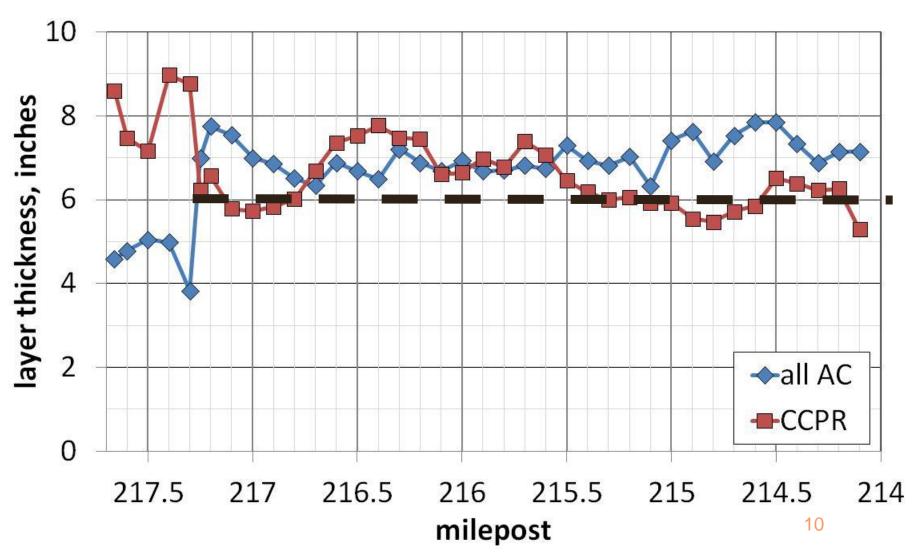
I-81 Pavement Design

Left Lane	Right Lane	
4-inch New AC	6-inch New AC	
5-inch CIR Existing AC	6-inch CCPR	
Existing Aggregate	12-inch FDR	
Existing Subgrade	Existing Subgrade	

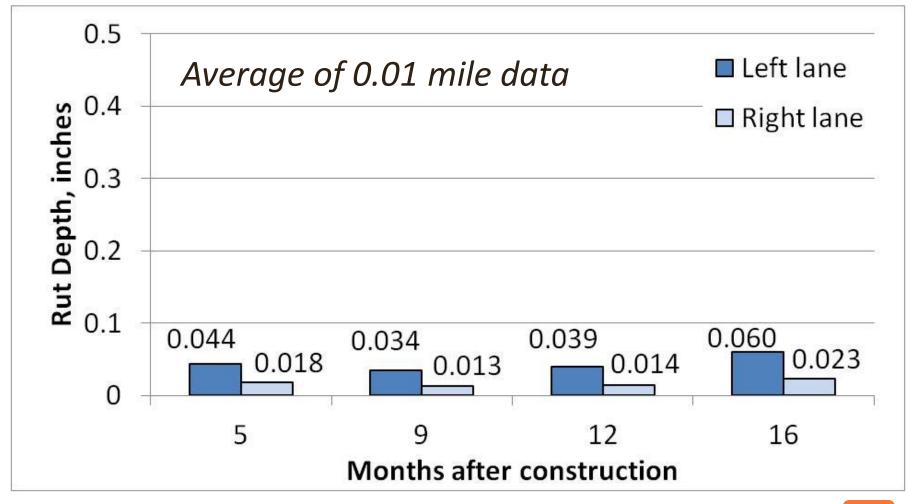
More than 70 percent was derived from recycled materials

I-81 Pavement Design, Right Lane

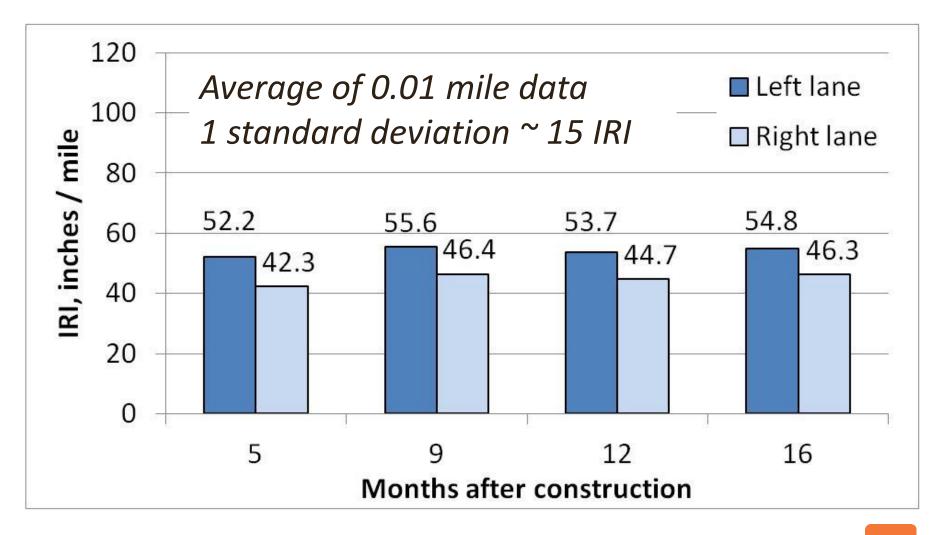
First 2150 ft	Remainder of Project	
4-inch New AC	6-inch New AC	
8-inch CCPR	6-inch CCPR	
12-inch FDR	12-inch FDR	
Existing Subgrade	Existing Subgrade	


Compare 1st 2150 ft (4 over 8) with 2nd 2150 ft (6 over 6)

Falling Weight Deflectometer


- Structural number (SN), December 2011
 Right lane = 8.8, Left lane = 5.5
- Right lane SN
 - 4-inch AC / 8-inch CCPR = 9.0
 - 6-inch AC / 6-inch CCPR = 8.7
 - Standard deviation ~ 0.5
- No backcalculated layer moduli
- 2nd test was November 15th, not yet analyzed

Ground Penetrating Radar (Right Lane)



Rut Depth

Ride Quality

12

Ride Quality, Right Lane

Comparing 1st 2150 ft (4 over 8) with 2nd 2150 ft (6 over 6)

I-81 Field Testing Summary

• FWD testing

 Assumptions of structural layer coefficients for recycled layers are conservative (for this project)

- Rut and Ride quality
 - Statistical difference between lanes and within right lane. Practically significant?
- There is still a need to assess long-term performance

- More than 2.5 million ESALs in right lane to date

NCAT Recycled Sections

N3	N4	S12
6-inch AC	4-inch AC	4-inch AC
5-inch CCPR	5-inch CCPR	5-inch CCPR
6-inch Agg	6-inch Agg	8-inch FDR
Subgrade	Subgrade	Subgrade

N3 vs. N4, N4 vs. S12 Section length = 200 ft

NCAT Recycled Sections

- Constructed August 2012
- Trafficking began October 2012
 - 2 years, 10million ESALs
- Constructed with CCPR rather than CIR
 - Used millings from 2011 I-81 project
 - Foamed asphalt
- FDR placed in Section S12
 - Stabilized existing aggregate base and subgrade
 - Cement

Anticipated Results

- Performance Comparisons
 - Performance of 4-inch vs. 6-inch AC over CCPR
 - Performance of 4-inch AC over FDR vs. aggregate base
 - Performance of previous full-depth asphalt sections vs. recycled sections
- Instrumentation
 - Stiffness / performance of CCPR with respect to accumulated traffic

NCHRP 9-51

- Material Properties of Cold In-Place Recycled and Full-Depth Reclamation Asphalt Concrete for Pavement Design
- Focus areas
 - Laboratory testing for structural properties of field cured materials
 - Material property inputs for MEPDG/DarWin-ME
 - Distress models for MEPDG/DarWin-ME

NCHRP 9-51 Project Team

- Charles Schwartz

 University of Maryland (PI)
- Brian Diefenderfer – VCTIR (Co-PI)
- Todd Thomas

 Colas Solutions
- Mike Marshall
 Wirtgen America

NCHRP 9-51

• Work underway

- Literature review and summary of proposed tests

- Next steps
 - Sample from (approx. 12) completed projects and conduct lab testing to develop material inputs for design
 - Led by VCTIR
 - Determine adequacy of existing distress-prediction models for asphalt-based recycled materials
 - Led by University of MD

Summary

- Recycling can be advantageous to VDOT
 - Cost
 - Environment
 - Construction solutions
- Research is adding to our knowledge-base
 - Summarizing and documenting the experiences of others
 - Developing engineering design input parameters
 - Assessing long-term performance

We bring innovation to transportation.

Thank you!

brian.diefenderfer@vdot.virginia.gov 434-293-1944