Welcome and Overview of VTTI Center for Sustainable Transportation Infrastructure

Gerardo W. Flintsch
Director, Center for Sustainable transportation Infrastructure
Professor of Civil and Environmental Engineering
Outline

1. Introduction to CSTI
2. Examples of Past, Current & “Developing” Projects
3. Sustainable Pavements

Center for Sustainable Transportation Infrastructure
Part 1 – Introduction
Center for Sustainable Transportation Infrastructure
VTTI’s Mission

Conduct transportation research with the goal of:

Saving Lives

Saving Time

Saving Money

Second largest transportation institute in the U.S.
VTTI

✓ Established in August 1988 by US DOT as a University Transportation Center
✓ Largest university-level research center at Virginia Tech
✓ More than 300 faculty, staff and students
✓ Working on over 150 projects
✓ $80 Million Awarded
✓ $22 Million in Annual Expenditures
✓ Largest supporter of both undergraduate and graduate students
VTTI Research Areas

- Human Factors and Safety (naturalistic studies)
- Transportation Technology
- Sustainable Transportation Infrastructure (CSTI)
- Traffic and Mobility
- Injury Biomechanics
- Transportation Policy
- Product Development
CENTER FOR SUSTAINABLE TRANSPORTATION INFRASTRUCTURE

- Partnership between the Virginia Tech Transportation Institute (VTTI) and the Via Department of Civil and Environmental Engineering (CEE) Transportation Infrastructure and Systems Engineering (TISE) Program

Looking for solution to the Infrastructure Challenges
CSTI Vision

A worldwide leader in transportation infrastructure research and education

- Conduct **high-impact research** for accelerating the renewal, increasing safety, reducing life-cycle costs, and ensuring sustainability of transportation infrastructure systems
- Be a paradigm of **collaboration** among governments, academia, and industries
- Provide **excellent environment**, resources, and instruction for students to learn fundamental concepts, acquire advanced knowledge, and gain practical experience
Laboratories

- The Virginia Smart Road
- SuperPave binder test equipment
- HMA characterization / performance
 - Dynamic modulus, resilient modulus, creep compliance, fatigue, low temperature and rutting evaluation
 - Mobile Load Simulator (MLS)
- Non-destructive Testing & Sensing Technologies
Virginia Smart Road

HMA
Superpave, SMA, OGFC

VTTI labs

CRCP & JRPC
Main Research Objectives

- Design and construct pavements with minimum life cycle cost
- Build safe, smooth-riding, silent, and durable pavements
- Provide more accurate assessment of the infrastructure structural health
- Improve investment decisions by providing better asset data & decision-support tools
- Make our transportation infrastructure materials, systems and programs more sustainable
Virginia Sustainable Pavements Research Consortium

- Collaboration to advance the state of pavement engineering in the commonwealth, the United States, and the World
 - Focus on strategically selected high-impact research projects on pavement materials, performance, design, maintenance and management
 - Excellent partnership to pursue national and international funding opportunities
VA-SPRC – Benefits

Allowed for competing for large-scale national projects

High ROI / benefit-cost ratio

- Seed investment of ~$600K (plus several VDOT-sponsored projects)
- Attracted > $4.2 M since FY07 in external research funding
- While producing cost-saving, practical, implementable outcomes for VDOT
Part 2 – Example of Projects
Past, Current & “Developing”
Smart Road Pavement Research
ME Pavement Design
Asphalt Materials Characterization in Support of Implementation of the MEPDG

- Full hot-mix asphalt (HMA) characterization to support the implementation of mechanistic-empirical pavement design procedures in Virginia.

Longer lasting pavements?
Application of Digital Images to measure HMA Uniformity

Center for Sustainable Transportation Infrastructure, VTTI
$1.5M program focused on enhancing the level of service provided by the roadway transportation system through optimized pavement surface texture characteristics.
Pavement Surface Properties
Consortium – Current Projects

- Organize annual equipment “rodeos”
- Seasonal monitoring
- Evaluation of new technologies
- Evaluation of high-friction systems
- IFI (International Friction Index) Implementation
- Continuous Friction Measurements Technology Deployment
- Development of new technologies
Example of Evaluation of New Technologies: High-Friction Surfaces

- Identification of Products and Sites
- Construction and Installation Data Collection
 - Constructability and maintainability
- Field Evaluation
 - Friction (DFT & Griptester)
 - Macrotexture (CTMeter)
- Cost / benefit analysis
- Now approved as low-cost safety counter-measure
Splash–Spray Assessment Tool Development Program

Model Development

→ Validation

→ Threshold Criteria

→ Technology Transfer
Development and Demonstration of Pavement Friction Management Programs

Objective:

- Determine criteria and develop methods, for establishing *investigatory* (desirable) level and *intervention* (minimum) levels for friction and *macro-texture* for different friction demand categories or classes of highway facilities for at least four states.

- Assist at least four states in developing PFM Programs.

- Demonstrate state-of-the-art friction (and macro-texture) measurement equipment.
Field Support for VDOT Quiet Pavement Implementation Program

OBS1 (dBA)

- Control (A)
- Control (C)
- PFC 12.5
- AR-PFC 9.5
- NGCS
- PFC 9.5
- SMA 9.5
- CDG
- Trans. Tined PCCP

PFC 12.5 AR-PFC 9.5 NGCS PFC 9.5 SMA 9.5 CDG Trans. Tined PCCP
PAVEMENT EVALUATION 2010
October 25–27, 2010
The Hotel Roanoke & Conference Center, Roanoke, Virginia

http://www.vtti.vt.edu/conferences/PE_2010.php
Smooth, Safe, Quiet, and Sustainable Travel through Innovative Technologies

SHRP 2 R06 (F) Development of Continuous Deflection Device

RWD Deflection

- **Slope** \(= \frac{V_v}{V_h} \)

Measurement Methodology

- Deflection is difference between deflected and undeflected profiles (i.e., \(D_2 - C_1 \))
Development of a Network-Level Pavement Structural Capacity Index

- Developed tools to analyze pavement structural capacity at the network level
 1. Network-level “structural” pavement condition index
 2. Framework to specify structural capacity thresholds based on non-destructive evaluation and analysis.
 3. Algorithm to scope pavement projects at the network level

\[CCI(t) = 100 - e^{a-b*c^{LN(\frac{1}{T})}} \]
Linking Asset Management Data Collection with Decision Making

1. Investigate how data collection is linked with decision processes – especially at the Project Selection level

2. Propose a framework for effective and efficient data collection to support Project Selection decision
Multi-criteria Network-Level Optimization Models for Pavement Preservation Programming

- Reflect agency goals & performance targets
- Handle multiple objectives
- Considers probabilistic constraints
- Easy to understand and simple to implement

![Graph showing appropriate group prioritization with various criteria](image)

- Preservation Cost/Benefit
- Network & Local Importance
- Overall Condition
- Group 1
- Group 2
- Group 3
- Group 4

This graph illustrates the appropriate group prioritization based on various criteria.
Outreach/Service Example: Implementing a Pavement Management System for Christiansburg, VA

- Worked with municipal engineers to determine pavement condition following the PCI procedure
- Implemented a municipal Pavement Management System using MicroPAVER
- PMS analysis showed that pavement condition improved with a preventive maintenance program

<table>
<thead>
<tr>
<th>Budget</th>
<th>2012 PCI Without PM</th>
<th>2012 PCI With PM</th>
<th>2031 PCI Without PM</th>
<th>2031 PCI With PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,000,000</td>
<td>73</td>
<td>76</td>
<td>55</td>
<td>64</td>
</tr>
<tr>
<td>$750,000</td>
<td>73</td>
<td>76</td>
<td>48</td>
<td>57</td>
</tr>
<tr>
<td>$500,000</td>
<td>72</td>
<td>75</td>
<td>45</td>
<td>49</td>
</tr>
</tbody>
</table>
Objective: To develop a framework for optimizing the decision-making, management, and funding process across several assets considering multiple objectives (sustainability) and constraints.
Developing Area Example 2: **Probe Vehicles for Road Infrastructure Health Monitoring**

Objective: To use data collected from probe vehicles to extract information that could be used to remotely and continuously determine road infrastructure health

Pavement Assessment and Management Applications Enabled by the Connected Vehicles Environment – Proof-of-Concept

![Graph](image1)

![Graph](image2)

![Graph](image3)
Developing Area Example 3: **Accelerated Pavement Testing**

- To test new design and concepts before field implementation
- Significant quantifiable benefits have been reported by the users
- Potentially linked with a National Center for Pavement Recycling and Reclaiming
Part 3 – Sustainable Pavements
What is a “Sustainable” Pavement?

- Safe ⇒ Optimized surface properties
- Healthy ⇒ Long lasting, well preserved
- Affordable ⇒ Life-cycle cost analysis (LCCA)
- Renewable ⇒ Maximize reuse & recycle
- Operates fairly ⇒ Asset management
- Limits emissions
- Limits use of resources ⇒ LCA-optimized materials, processes, & policies

A first attempt to define
Source: Sustainable Pavements, Flintsch (2010) Tempe, AZ
INTERNATIONAL SUSTAINABLE PAVEMENT PARTNERSHIP

http://www.vtti.vt.edu/ISPW/ISPW-2010.html
1. **Sustainability Assessment Methods**
 - 1.1 Indicators
 - 1.2 Sustainability Rating System
 - 1.3 Sustainability Decision Support Tools

2. **Innovation**
 - 2.1 Financing and Risk
 - 2.2 New Products
 - 2.3 Standard Testing/Certification Practices/Protocols

3. **Dissemination**
 - 3.1 Best Practice
 - 3.2 Policy Makers and the Public
Assessing Sustainability: Pavement Construction and Network Sustainability Management Pavement

Dwight David Eisenhower Transportation Program Grant for Research Fellowship (GRF)

Objective:

- To develop a decision-support methodology to reliably evaluate and compare the sustainability impacts of highway pavement design, preservation, and renewal alternatives
Life Cycle Assessment of Sustainable Road Pavements: Carbon Footprinting and Multi-Attribute Analysis

- Assess the environmental impacts of road-related practices, strategies, and materials
- Implement a procedure to include these eco-efficiency values into a more comprehensive decision support system

![Diagram showing the evaluation of alternatives, costs, performance, environment, multi-attribute optimization, and optimal strategy at project and network levels.]

Center for Sustainable Transportation Infrastructure
High RAP High Binder Asphalt Concrete Mixes

- To investigate the effect of increasing the amount of binder content on performance of high RAP surface mixtures (40% and more).
 - Compare no Rap, 25%, 40% RAP (and 100% RAP)
 - Dynamic Modulus, Beam fatigue, Flow Number, APA and Permeability
Objective: enhancing pavement sustainability
✓ Identification and evaluation of novel products, practices, and pavement systems
✓ Best practices for sustainable pavement management
✓ Climatic changes adaptation
National Sustainable Pavement Consortium

Current Projects

✓ Started:

1. Consideration of the Use Phase in the Pavement Life-Cycle Assessment
 Part 1: Pavement Recycling Project Selection Guidelines

✓ Upcoming: Use of LCA in pavement-type selection
Objective: To develop an independent research group that will be the resource of choice for government and industry for conducting basic and applied research, technology transfer, training, and implementation support on pavement recycling, reclaiming, and reusing technologies and solutions.
National Pavement Recycling and Reclaiming Center

Vision

World-class research and technology transfer facility that:

✓ Conducts high-impact research for accelerating the implementation of more sustainable pavement solutions through pavement recycling and reclaiming technologies

✓ Is a paradigm of collaboration among government, academia, and industry
National Pavement Recycling and Reclaiming Center

Vision (cont.)

✓ Provides excellent environment, resources, and instruction for practitioners and students to learn fundamental concepts and gain practical experience and know-how on pavement recycling and reclaiming technologies

✓ Provides pavement design professionals and public agencies with the knowledge and tools necessary to use pavement recycling and reclaiming as a feasible and competitive alternative to traditional pavement preservation and rehabilitation strategies.
Questions?