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MIT Autonomous Vehicle Technology Study:
Large-Scale Deep Learning Based Analysis of
Driver Behavior and Interaction with Automation

Lex Fridman*, Daniel E. Brown, Michael Glazer, William Angell, Spencer Dodd, Benedikt Jenik,
Jack Terwilliger, Julia Kindelsberger, Li Ding, Sean Seaman, Hillary Abraham, Alea Mehler,
Andrew Sipperley, Anthony Pettinato, Bobbie Seppelt, Linda Angell, Bruce Mehler, Bryan Reimer™

Abstract—Today, and possibly for a long time to come, the
full driving task is too complex an activity to be fully formalized
as a sensing-acting robotics system that can be explicitly solved
through model-based and learning-based approaches in order to
achieve full unconstrained vehicle autonomy. Localization, map-
ping, scene perception, vehicle control, trajectory optimization,
and higher-level planning decisions associated with autonomous
vehicle development remain full of open challenges. This is
especially true for unconstrained, real-world operation where the
margin of allowable error is extremely small and the number of
edge-cases is extremely large. Until these problems are solved,
human beings will remain an integral part of the driving task,
monitoring the Al system as it performs anywhere from just over
0% to just under 100% of the driving. The governing objectives of
the MIT Autonomous Vehicle Technology (MIT-AVT) study are
to (1) undertake large-scale real-world driving data collection
that includes high-definition video to fuel the development of
deep learning based internal and external perception systems,
(2) gain a holistic understanding of how human beings interact
with vehicle automation technology by integrating video data

with vehicle state data, driver characteristics, mental models,
and self-reported experiences with technology, and (3) identify
how technology and other factors related to automation adoption
and use can be improved in ways that save lives. In pursuing
these objectives, we have instrumented 21 Tesla Model S and
Model X vehicles, 2 Volvo S90 vehicles, and 2 Range Rover
Evoque vehicles for both long-term (over a year per driver)
and medium term (one month per driver) naturalistic driving
data collection. Furthermore, we are continually developing new
methods for analysis of the massive-scale dataset collected from
the instrumented vehicle fleet. The recorded data streams include
IMU, GPS, CAN messages, and high-definition video streams
of the driver face, the driver cabin, the forward roadway, and
the instrument cluster (on select vehicles). The study is on-
going and growing. To date, we have 78 participants, 7,146 days
of participation, 275,589 miles, and 3.5 billion video frames.
This paper presents the design of the study, the data collection
hardware, the processing of the data, and the computer vision
algorithms currently being used to extract actionable knowledge
from the data.




Overview

* Approach: Use computer vision (deep learning) to convert raw
video data to knowledge in all data before considering epochs.

* Challenges

* New algorithms
Compute resources to train neural network models
* New annotation methods and tools...

e to build supervised learning datasets for machines
* to interpret and label highly subjective scenarios

Large-scale distributed compute for inference
Hot storage (a lot more read than write)

* Deep Learning + NDS

e 300 Petabytes of data processed
* 3 million hours of GPU-enabled, 16 core, 64-128gb RAM machines
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Vehicles and Automation

Range Rover Lane Keep Assist Volvo Pilot Assist I
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MIT Autonomous Vehicle
Technology Study

Drivers: 99
Vehicles: 29

Study months to-date: 30
Participant days: 11,846

Miles driven: 405,807
Video frames: 5.5 billion

Study data collection is ongoing.
Statistics updated on: ful 20, 2018.

Tesla Model X
17,035 miles
701 days in study

Tesla Model S
14,398 miles
371 days in study

Tesla Model X
9,556 miles
378 days in study

Tesla Model S
6,718 miles
194 days in study

Cadillac CT6
1,161 miles
53 days in study

Tesla Model S
39,320 miles
583 days in study

Tesla Model S
25,491 miles
572 days in study

Tesla Model X
21,915 miles
499 days in study

Tesla Model S
15,735 miles
322 days in study

Tesla Model S
13,010 miles
463 days in study

Tesla Model S
9,076 miles
183 days in study

Tesla Model X
4,587 miles
233 days in study

Tesla Model S
(Offload Pending)

Tesla Model S
33,177 miles
861 days in study

Range Rover Evoque
22,957 miles
598 days in study

Tesla Model S
20,433 miles
647 days in study

Volvo S90
15,570 miles
672 days in study

Tesla Model S
12,353 miles
321 days in study

Tesla Model X
8,587 miles
316 days in study

Tesla Model X
4,441 miles
416 days in study

Tesla Model S
(Offload Pending)

Tesla Model X
31,600 miles
748 days in study

Range Rover Evoque
22,644 miles
763 days in study

Volvo 590
19,231 miles
634 days in study

Tesla Model S
15,256 miles
714 days in study

Tesla Model S
10,149 miles
146 days in study

Tesla Model S
8,484 miles
325 days in study

Tesla Model S
2,925 miles
133 days in study

Cadillac CT6
(Offload Pending)
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Cumulative Distance Traveled (miles)

Dataset Growth
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From Pixels to Knowledge:

Driving Scene Object Detection
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From Pixels to Knowledge:

Lanes (“Drivable Area”)
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From Pixels to Knowledge:

Driving Scene Segmentation
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From Pixels to Knowledge:

Driving Scene Segmentation
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Driver State

Increasing level of detection resolution and difficulty

Pedestrian Body Head Blink Blink Eye Blink Pupil Micro
Detection Pose Pose Rate Duration Pose Dynamics Diameter Saccades
Face Face Glance
Detection | | Classification || Classification

Low

Glance Region

Right
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Deep Learning: Principles of Application

* Requirements for success (from more to less critical)

Data: A lot of real-world data (and algorithms that learn from data)
Semi-supervised: Human annotations of representative subsets of data
Efficient annotation: Specialized annotation tooling

Hardware: Large-scale distributed compute and storage

Robustness: Algorithms that don’t need calibration (learn the calibration)
Temporal dynamics: Algorithms that consider time

e Current importance relation for successful application of deep learning:

Good Algorithms*

* As long as they learn from data

Representation
Learning

Machine
Learning

Artificial
Intelligence
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Deep Learning for Driver State

What:

 Glance
(CHI 2018)

* Cognitive Load
(CHI 2017)

* Drowsiness
* Emotion

* Body

* Activity

How:

e Real-world data

 Formulation of the task such
that it can be labeled and
trained in a supervised way.

* Deep learning




Cognitive Load Estimation

* Whatis it?
Algorithm to detect how hard
you’re “thinking” (accessing
working memory) from camera
* Where?
Real-world (aka anywhere)

* Just driving?
No. Any activity (aka anywhere)
* Why?
Attention is more than gaze.
Lost in thought.

* Why camera?
Cheap, data, deep learning.

For the full list of references visit:
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Cognitive Load Estimation

Low CL Medium CL Highch
(0-back) (1-back) (2-back) Extract Pupil | | HMM ! :
Position Model i Cognitive Load |

+  Classification

Decision !

Eye Image Sequence 3D-CNNModel = ¢

6 seconds, 15 fps, 90 images
Two approaches: HMM and 3D-CNN

HMM: Hidden Markov Model

* Input: Sequence of pupil positions
(normalized by intraocular segment)

3D-CNN: Three Dimensional
Convolutional Neural Network

 Input: Sequence of raw images of eye region

For the full list of references visit: MIT Autonomous Vehicle Technology Study I I I - -
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Two-Stream 3D Convolutional Neural Networks

a) LSTM b) 3D-ConvNet c) Two-Stream
Action Action Action
/—T— r—T—-\ 1‘\
w @ 3D ConvNet l_.p
N ConvNet}
ConvNet| oo ConvNet l )
f t I
Images I
Image 1 | oo | Image K 110 K { Image 1 Optical ‘
L Flow 1to N||/|
E Ame __/
Inception Architecture:
Rec. Field: Rec. Field:
711,11 11,27,27
Video e

stride 2

| Inc.

Rec. Field:
59,219,219

Inc. I

Rec. Field:
23,75,75

<—1 Inc. '—“ Inc. H Inc.

Inc.

‘—; Inc.

Rec. Field:
99,539,539

_.-_L Inc. —. Inc. N—Predictions

time

d) 3D-Fused e) Two-Stream
Two-Stream 3D-ConvNet
Action
' Action
3D ConvNet l d
_k _I_T_T—J I I—b q—I
p ‘ 3D ConvNet || 3D ConvNet
tConvNe‘t} ‘ nvNetW ’ H
| Images Optical
Image 1||  Optical , 1to K l Flow 1 to K {
\ Flow 1 to N||||})/ - F
g e

For the full list of references visit:
https://hcai.mit.edu/references
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Real-Time Cognitive Load Estimation

CONVERSATION MEDIUM CONVERSATION HIGH CONVERSATION HIGH

For the full list of references visit: MIT Autonomous Vehicle Technology Study I I- -
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Glance Classification vs Gaze Estimation

Accuracy: 100%

Accuracy: 1007%  Frames: 1 Accuracy: 100%  Frames: 1
Time: 0.03 secs

Accuracy: 100% Frames: 1
Time: 0.03 secs
Total Confident Decisions: 1

Time: 0.03 secs
Total Confident Decisions: 1 Total Confident Decisions: 1
Correct Confident Decisions: 1 Correct Confident Decisions: 1

Correct Confident Decisions: 1

Frames: 1
Time: 0.03 secs
Total Confident Decisions: 1
Correct Confident Decisions: 1

Road Road

Accuracy: 100%

p—
Accuracy: 1007%  Frames: 1 Accuracy: ——%  Frames: 1 Accuracy: 100%  Frames: 1
Time: 0.03 secs Time: 0.03 secs Time: 0.03 secs
Total Confident Decisions: 1 Total Confident Decisions: 0 Total Confident Decisions: 1 Total Confident Decisions: 1
Correct Confident Decisions: 1 Correct Confident Decisions: 0 Correct Confident Decisions: 1 Correct Confident Decisions: 1
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Glance Classification

Latest gaze classification:
-

Autopilot Status:
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Application-Specific Emotion Recognition:

Driver Frustration

Class 1: Satisfied with Voice-Based Interaction

:brow furrow
L :chin raiser

:disgust (image)
:eyes closed

u dinner brow raise

:lip depressor

:lip press

:lip pucker

:lip raiser

:lip suck

:mouth open

:nose wrinkle

:outer brow raise

:smile

:smirk

; 0 ] ) ‘
" v 4 3 : - )
xpressiveness: :smirk (left)
. ’ I :smirk (right)

Class 2: with Voice-Based Interaction

Gender: Male

Glasses:

\ Interocular distance:81
Mean Face luminance:#

Pitch angle:

e

surprise:

Gender: Male ID' O -»A :Brow fu.rrow

Glasses: Yes
Interocular distance: 164.8
Mean Face luminance: 140.5 y .
Pitch angle: 7.4
Roll angle: =5.5
Yaw angle: —8.0
anger:
contempt:
disgust?
fear:
joy:
sadness:
surprise:

Kpressiveness:
L hﬂ B

W ismirk (right)

For the full updated list of references visit: MIT Autonomous Vehicle Technology Study I I I - -
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VIdStep Frame-by-Frame In-Browser Video Player and Annotator

Filter:

road

rearview_mirror

instrument_cluster

road

P 000/105 @ »Y —eo I ¥

https://vidstep.com

For the full updated list of references visit: MIT Autonomous Vehicle Technology Study I I I - -
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(Semi-Automated) Glance Annotator

1 N N
Input/Output ! Front-End b TensorFlow
: (Javascript)
1 A WebGL accelerated, browser based JavaScript library for
| training and deploying ML models.
I
I
| .
Video | Frame-by-Frame * TensorFlow.js
| Video Player .
| y * Keras.js
|
I
v « WebDNN
1 1 1
L : * deeplearn.js
: E DeepGlance (JS) E P J
1 1 1 .
I ! : * CO nvnet.Js
| 1 1
< ] . !
. ! | Semi-Automated !
Annotations ! ! Annotation :
T :
1 X :
: E Your Data !
] |
|
I
I
|
E?tr;:;e/:]uclzliilfrz?:tezi}irs:f:fr;f;rsences visit: MIT Autonomous Vehicle Technggiti(sjtmu:z I I I i I-



Body Pose Estimation: Cascade of Pose Regressors

DNN-based refiner

For the full updated list of references visit: MIT Autonomous Vehicle Technology Study I I I - -
https://hcai.mit.edu/references Lex Fridman II
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Costs of deep learning:

e 300 Petabytes of data

processed

* 3 million hours of GPU-
enabled, 16 core, 64-
128gb RAM machines

|CAN | IMU | GPS| ‘Face ‘ Body |

Epox TOC Vis

Gaze Eye

Distributed Computing

| Job Pool |

!

| Job Scheduling |

!

| Job Completion |

MIT-AVT Data Pipeline

RIDER Logger Hardware

Heartbeat
Database

Heartbeat GUI
(Weh-Based)

Synchronization

Private Trip Data

Legend:

1Gb

100 Gb

5,000 Gb

100,000 Gb

Removals

‘ Perform Requested Removals |

!

‘ Remove Non-Consented Subjects |

Processed Trip Data

Knowledge Extraction

!

‘ Manual Annotation |

i
1
1
:
i ‘ Semi-Automated Annotation |
1
1
1
1
1
|

|

1
1
1
, ‘ Epoch Extraction
1
1
1
1
1
1
1

.

‘ Visualization

Manual
Annotation :
Pipeline !
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Learning

| Lecture 1

Cyut®f 111
Deep EEme
Reinforcement
Learning B

Computer
Vision

selfdrivingcars.mit.edu

Deep Learning
[ Slides ] - [ Lecture Video ]

Deep Learning for
Human Sensing ™

Lecture 2
Self-Driving Cars
[ Slides ]- [ Lecture Video ]

Lecture 3
Deep Reinforcement Learning
[ Slides ] - [ Lecture Video ]

s ®

nuTonomy

Lecture 4
Computer Vision
[ Slides ] - [ Lecture Video ]

Lecture 5

Deep Learning for Human Sensing

| [Slides ]- [ Lecture Video ]

Guest Talk
Sacha Arnoud

Director of Engineering, Waymo

[ Lecture Video ]

Guest Talk

- Emilio Frazzoli

CTO, nuTonomy. Previously: Professor, MIT.

[ Lecture Video ]

Guest Talk

Sterling Anderson

Co-Founder, Aurora. Previously: Director, Tesla Autopilot.

[ Lecture Video ]

MIT Autonomous Vehicle Technology Study I I I = =
Lex Fridman II



hcai.mit.edu

) — : '\k - ¥
Ak
v
»
| 1’
‘E 1‘1 Af;_
I . ‘
=0 —
» ) )e —
1‘ 7
A,f o
o v
i °
Q.

MIT Autonomous Vehicle Technology Study I I I -
Lex Fridman I




Thank you

lex.mit.edu
@lexfridman

Twitter
LinkedIn

Facebook

Instagram You Tuhe

YouTube
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