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Background

@ Truck crashes: major safety hazard for commercial truck
drivers.

o Fatigue: major risk factor for long-haul truck drivers.

@ Sleep: important factor affecting fatigue.

e Drivers who slept less prior to trips would be more likely to
involve in safety-critical events.
o Breaks (including sleep) before driving are beneficial in
reducing safety-critical events.
o Motivation

e To evaluate the temporal profile of driving performance in a
long shift.

e To compare driving performance among drivers with
< 7 hours,

sleep prior to a shift ¢ 7-9 hours,
> 9 hours.



Data Collection

e Participants
e 100 drivers from 4 for-hire trucking companies.
e Followed up for around 4 weeks.

e Driving Data
e Naturalistic data collection approach.
e Truck fitted with unobtrusive data-collection equipment.
e Data recorded from ignition-on to ignition-off at high frequency.
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Figure: Photo: Five video camera images [2].
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Figure: A sample of the daily activity register [2].



Data Collection

o Participants

e 100 drivers from 4 for-hire trucking companies.
e Followed up for around 4 weeks.

@ Driving Data

e Naturalistic data collection approach.
e Truck fitted with unobtrusive data-collection equipment.
e Data recorded from ignition-on to ignition-off at high frequency.

o Activity Data

e Drivers self-reported using a daily activity registry.

o Safety-Critical Events
e Crash;
o Near-crash;
e Crash relevant conflict;
e Unintentional lane deviation.



Data Processing
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Figure: Illustration of data processing. Dots represent events, and ¢;;,
where j = 1,2, 3, represents the driving time to event j in shift .

1,880 shifts from 96 drivers contain valid sleep data.
o Off-duty sleep < 7 hours: 388 (20.6%) shifts;
o Off-duty sleep in 7-9 hours: 1,095 (58.2%) shifts;
o Off-duty sleep > 9 hours: 397 (21.1%) shifts.



Sleep Hours vs Driving Length
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Figure: The percent of shifts driving into the 1st-11th driving hour by
sleep time group.



Sleep Hours vs Breaks
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Figure: The ratio of break length (in hours) to driving exposure (in
hours) in the 1st—11th driving hours by sleep time group. Exposure in
the 4th hour, where i = 1,...,11, is the total driving time for all shifts
that occurred in the ith hour.



Time-Varying Coeflicient Model for Recurrent Events
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Notations

Consider a sample of I driving shifts. For i =1,... 1,

e Counting process {N;(t),t > 0}

o N;(t): the number of events occurred over [0, ¢].

o AN;(t): the number of events occurred over [t, ¢+ At).
e Covariates

o x; = (Ti1,...,Tip)" assumed to have constant coefficients.

o 2z; = (%i1,...,2iq) assumed to have time-varying coefficients.
@ Process history at time ¢, H;(t) = {N;(s),0 < s < t,x;,2;}.
o Gamma frailty u; ~ Ga(shape = 1/¢,rate = 1/¢)

o E(u;) = 1;

o var(u;) = ¢.



Model

e Conditional on u;, the intensity function is defined as

 P(AN;(t) = 1| H(t), ui
Nt Hi(6) ) = fn, DET A0,

e Assume {N;(t),t > 0}|x;, z;, u; to be an independent Poisson
process with conditional intensity function

Ai(tlxs, 23, uq) = uipi(t)
= u; exp{zia + Bo(t) + 21 B1(t) + - - + 2igBy(1)}
o Let u;(t) = fg pi(s) ds. Marginal features of {N;(t),t > 0}:
o E[Ni(8)] = pi(t).

o var[N;(t)] = pi(t) + ¢ ui(t). < extra-Poisson variation

o cov[N;(s1,t1), Ni(s2,t2)] = d pi(s1,t1) pi(s2,t2). < association
between counts over disjoint intervals



Model: Time-Varying Coefficients

Penalized B-splines [3] for smooth estimation of 5;(t), where
l=0,1,...,q:

@ Let [tmin, tmax] be divided into k; equal intervals by knots
tmin = ClO < <l1 << Cl,kl = tmax-
@ The B-splines basis of degree v

Bl(t) = (Bll(t), e Bl7Kl (t))/, where K; = k; + v.

tin = EI‘O C.H c‘IZ C.,‘I3 dl4 = tmax

Figure: llustration of the B-spline basis for k; = 4 and v = 2.



Model: Mixed-Model Representation

Spline Parameters as Random Effects

Ai(txs, 24, us, Br) = ugexp {xj a + By(t)Bo + - - - + 2ig By (t)Bq }»
u; ~ Ga(1/¢,1/¢), B~ p(Bu7).

o Bayesian setting

ATﬁl,r+l 1
Dis = } ~N <0, 7_lI) .
A" By K,

o Frequentist setting
- 1
p(B;m) o 7T P exp {271 ﬂf(DfDl)ﬂL} :

e Inverse variance 7; (< ;) controls the amount of smoothness.



Simulation
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Simulation
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Application

ithin-Shifts: Unintentional Lane Deviation
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Conclusions

@ The total sleeping time is directly related to the total driving
time

@ The total sleeping time is directly related to breaks while
driving

e The total sleeping time will affect driving performance after 8
hours of driving

@ There is a complicated interaction effect among total sleeping
time, breaks, and driving performance over long trips.
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