

NECHNISCHE UNIVERSIT CHEMINITZ

Naturalistic Driving Research Symposium 2018

USING EUROPEAN NATURALISTIC DRIVING DATA TO ASSESS SECONDARY TASK ENGAGEMENT WHEN STOPPED AT A RED LIGHT

Tina Morgenstern¹, Tibor Petzoldt², Josef F. Krems¹, Frederik Naujoks³ & Andreas Keinath³

¹ Technische Universität Chemnitz, Germany
² Technische Universität Dresden, Germany
³ BMW Group, Germany

ALLGEMEINE UND ARBEITSPSYCHOLOGIE TU CHEMNITZ

SECONDARY TASK ENGAGEMENT

- The engagement in secondary tasks is common among drivers around the world (e.g., Dingus et al., 2016; Prat, Planes, Gras, & Sullman, 2014; Stutts et al., 2003; Thulin & Gustafsson, 2004)
- In addition to "traditional" secondary tasks (e.g., smoking, eating or drinking), drivers often engage in "technology based" secondary tasks (e.g., cell phone conversation or texting)
- Texting has increased in recent years, particularly among younger drivers (Nelson, Atchley, & Little, 2009; Young & Lenné, 2010)
- → Adverse effects on driving performance (e.g., Alm & Nilsson, 1994; Patten, Kircher, Östlund, & Nilsson, 2004; Strayer & Drews, 2004)

ALLGEMEINE UND ARBEITSPSYCHOLOGIE

Ē

SELF-REGULATORY STRATEGIES

- Research indicates that drivers use various forms of self-regulatory strategies to accommodate secondary task engagement while driving, e.g. by ...
 - ... adjusting driving behavior
 - Slowing down (e.g., Haigney, Taylor, & Westermann, 2000; Rakauskas, Gugerty, & Ward, 2004; Patten, Kircher, Östlund, & Nilsson, 2004)
 - Increasing distance to the lead vehicle (e.g., Hosking et al., 2007; Ishida & Matsuura, 2001; Strayer & Drews, 2004)
 - Avoiding lane changes (Beede & Kass, 2006)

SELF-REGULATORY STRATEGIES

- Research indicates that drivers use various forms of self-regulatory strategies to accommodate secondary task engagement while driving, e.g. by ...
 - ... adjusting driving behavior
 - ... selecting situations in which the driving task demand is low
 - When the car is moving slowly (e.g., Naujoks, Purucker, & Neukum, 2016)
 - When the car is stopped, e.g. at a red light (e.g., Stutts et al., 2005; Tivesten & Dozza, 2014)
 - \rightarrow Still diversion of attention away from the roadway leads to a reduction of situation awareness
 - → Risk for unsafe driving (in particular when the vehicle has to be set in motion again before the task has been completed)
 - \rightarrow Especially relevant for a secondary tasks like texting (due to long off-road glances)

Ē

SECONDARY TASK ENGAGEMENT AT RED LIGHTS

- So far, there are only a few studies that looked into secondary task engagement while waiting at a red light, mostly focusing on the prevalence of secondary task engagement (e.g., Huth, Sanchez, & Brusque, 2015; Huisingh, Griffin, & McGwin Jr., 2015; Kidd, Tison, Chaudhary, McCartt, & Casanova-Powell, 2016)
- Most of these studies are roadway observational studies
 - → They only investigate *if* secondary tasks occur, but not *how* secondary tasks are performed (regarding secondary task initiation and conclusion, glance behavior, etc.), which is relevant for the assessment of self-regulatory strategies
 - \rightarrow Naturalistic driving data can provide valuable insights

TECHNISCHE UNIVERSITÄT CHEMNITZ

PRESENT STUDY

GOAL OF THE PRESENT STUDY:

Investigation of drivers' secondary task engagement while waiting at a red light using European naturalistic driving data

L

Πø

How often do drivers engage in which secondary tasks while waiting at a red light?

How do secondary task initiation and conclusion relate to the actual red light episode?

How can texting while waiting at a red light be characterized (especially with regard to glance behavior)?

ALLGEMEINE UND ARBEITSPSYCHOLOGIE TU CHEMNITZ

UDRIVE – European naturalistic driving study

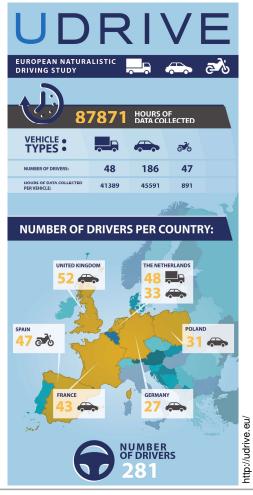
- First large-scale European naturalistic driving study
- Collection of naturalistic driving data for over two years for cars, trucks and powered two-wheelers
- Cars were equipped with:

Data acquisition system

(to collect GPS position, speed, brake pressure, yaw rate, steering wheel angle, etc.)

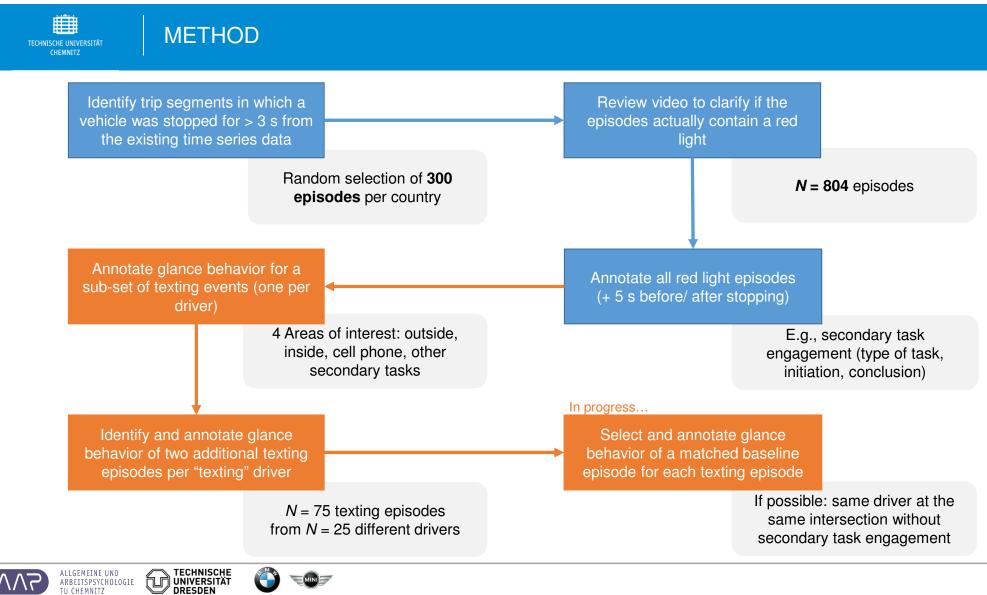
7 cameras

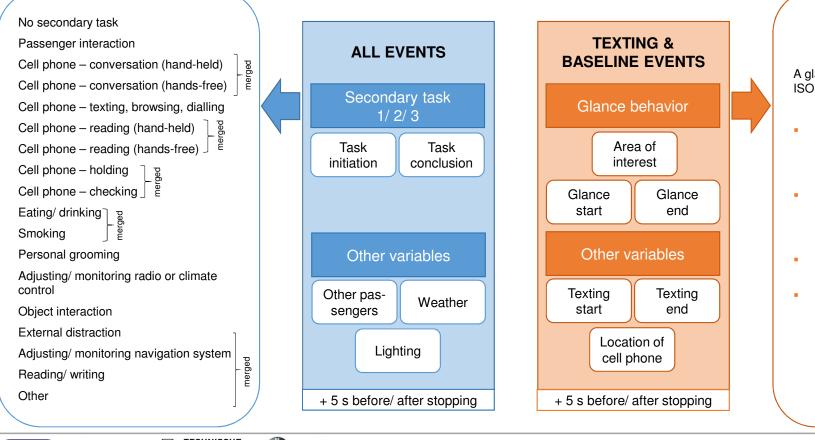
ALLGEMEINE UND


TIL CHEMNITZ

TECHNISCHE UNIVERSITÄT

(3 foward cameras, cabin camera, cockpit camera, face camera, feet camera)


Smart cameras (MobileEye) (to detect other road users)



Ê CHEMNIT7

METHOD

ANNOTATIONS

A glance was defined according to the ISO 15007-1:2014.

Outside:

Glances to the outside (e.g., through windshield, side windows, side mirrows, rear mirrow)

- Inside: Glances to the inside of the vehicle (associated with the driving task, e.g., looking at speedometer)
- Cell phone: Glances to the cell phone
- Other secondary tasks: Glances to other secondary tasks (e.g., radio or climate control)

9

METHOD

OVERVIEW OF THE DATASET

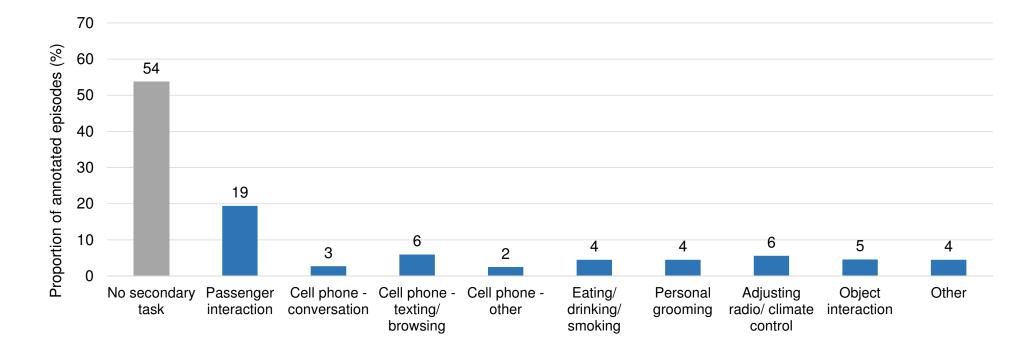
Ê

TECHNISCHE UNIVERSITÄT CHEMNITZ

All countries	Episodes 804	* 78	1 81	Ø Age (SD) 44 (13.16)*		c light time
Netherlands	162	15	16	45 (13.31)*	М	27
Germany	161	11	15	45 (17.15)*	SD	21.10
Poland	161	11	18	38 (7.86)*	Min	3
Great Britain	163	25	13	46 (13.63)*	Max	137
France	157	16	19	44 (11.82)		

* Missing values for age

10


RESULTS

Ê

TECHNISCHE UNIVERSITÄT CHEMNITZ

FREQUENCY OF SECONDARY TASK ENGAGEMENT

• Engagement in secondary tasks while waiting at the red light (N = 804)

Ê

TECHNISCHE UNIVERSITÄT CHEMNITZ

RELATION TO THE RED LIGHT EPISODE 🕒

Proportion (in %) of secondary tasks initiated/ concluded while waiting at the red light (N = 270)

Type of secondary task	Initiation and conclusion while standing	Only initiation while standing	Only conclusion while standing	Neither initiation nor conclusion while standing
All secondary tasks	51	11	17	21
Cell phone conversation	9	5	9	77
Cell phone texting, browsing, dialing	40	10	27	23
Cell phone other	70	10	20	0
Eating, drinking, smoking	8	22	6	64
Personal grooming	47	22	22	8
Adjusting radio or climate control	82	0	13	4
Object interaction	76	3	22	0
Other	65	15	12	8

Note. Passenger interaction excluded.

Ê

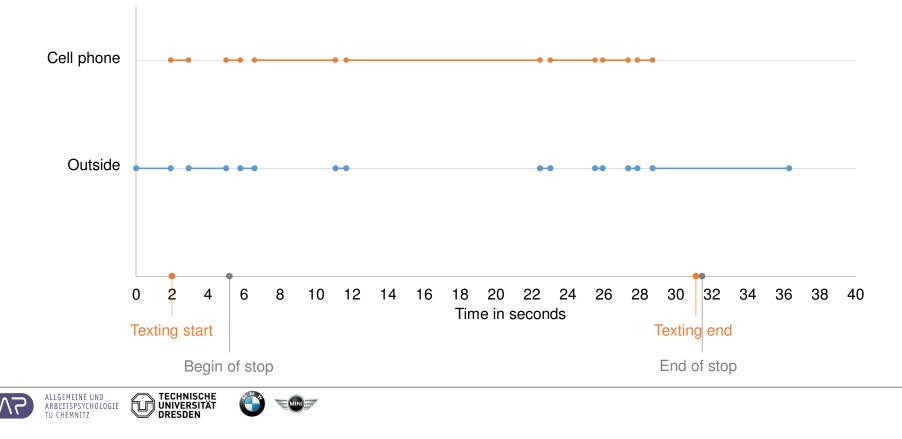
TECHNISCHE UNIVERSITÄT CHEMNITZ

RELATION TO THE RED LIGHT EPISODE 🕒

Proportion (in %) of secondary tasks initiated/ concluded while waiting at the red light (N = 270)

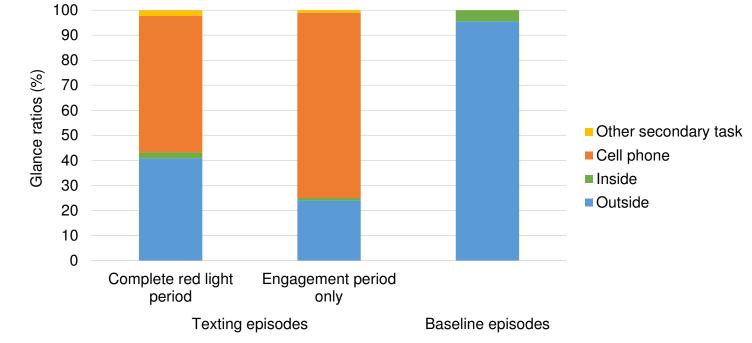
Type of secondary task	Initiation and conclusion while standing	Only initiation while standing	Only conclusion while standing	Neither initiatior nor conclusion while standing
All secondary tasks	51	11	17	21
Cell phone conversation	9	5	9	77
Cell phone texting, browsing, dialing	40	10 antly initiated (y^2)	27	23
Texting, browsing, dialing was sigr well as concluded (χ^2 (1) = 14.19 conversations.	nificantly more freque 7, <i>p</i> < .001, φ = .450	ently initiated (χ² () while waiting at th	1) = 8.419, <i>p</i> = .004 ne red light compare	ϕ , ϕ = .347) as ad to cell phone
Texting, browsing, dialing was sigr well as concluded (χ^2 (1) = 14.19	nificantly more freque	ently initiated (χ^2 (1) = 8.419, <i>p</i> = .004	-, φ = .347) as

Note. Passenger interaction excluded.



Ê

TECHNISCHE UNIVERSITÄT CHEMNITZ

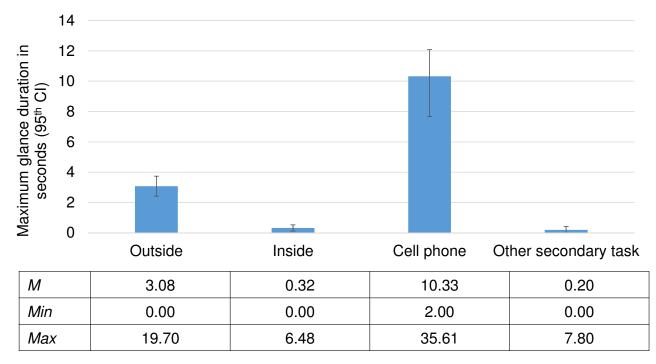

CHARACTERIZATION OF TEXTING WHILE WAITING AT A RED LIGHT

Glance pattern while texting for one prototypical texting episode (from begin to end of waiting period)

CHARACTERIZATION OF TEXTING WHILE WAITING AT A RED LIGHT

 Mean glance ratios for the four AOIs for texting episodes when analyzing the complete red light period and when analyzing the engagement period only (N = 75), contrasted with glance ratios in the baseline episodes (N = 25)

ALLGEMEINE UND ARBEITSPSYCHOLOGIE TU CHEMNITZ

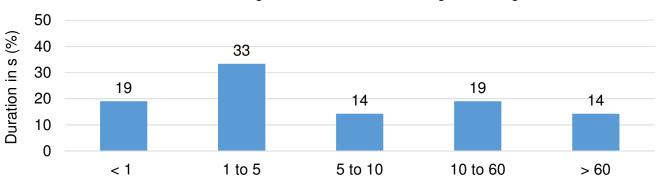

Ê

TECHNISCHE UNIVERSITÄT

CHARACTERIZATION OF TEXTING WHILE WAITING AT A RED LIGHT

• Maximum glance duration to each of the four AOIs for texting episodes when analyzing the engagement period only (N = 75)

Ê

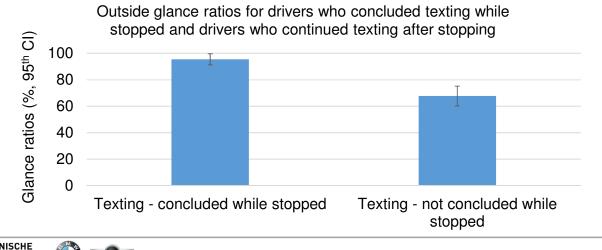


Ē

TECHNISCHE UNIVERSITÄT

CHARACTERIZATION OF TEXTING WHILE WAITING AT A RED LIGHT

- Continuation of texting after the traffic light turned green
 - In 57% of all texting events, texting was continued after the traffic light turned green
 - For these events: texting was finished on average 35 s after the vehicle started moving again (SD = 91.04, Mdn = 4 s, Min = 1 s, Max = 448 s)
 - Most of the texting events were finished within 5 s after the vehicle started moving again; <u>but</u>: there were some events in which texting was continued for more than 1 minute



Distribution of texting duration after the traffic light turned green

CHARACTERIZATION OF TEXTING WHILE WAITING AT A RED LIGHT

- Continuation of texting after the traffic light turned green
 - Comparison of the outside glances of those drivers who concluded texting while stopped (*N* = 32) and those drivers who continued texting (*N* = 43) in the 5 s after the vehicle started moving again showed a statistically significant difference regarding outside glance ratios
 (*t*(63.610) = -6.559, *p* < .001, *d* = -1.53)
 - → Drivers who continued to text after the car was set in motion again spent 27% less time glancing to the outside than drivers who concluded texting while stopped

Ē

TECHNISCHE UNIVERSITÄT

DISCUSSION & CONCLUSION

ECHNISCHE UNIVERSITÄT

- Drivers engaged in secondary tasks in almost half of the analyzed red light segments
- This prevalence is much higher than reported in observational studies from different European countries that are not restricted to red light contexts (Sullman, 2012; Prat, Planes, Gras, & Sullman, 2014; however, for prevalence in the US see Dingus et al., 2016)
- → Drivers seem to prefer this low-demand situation for secondary task engagement
- In-depth analyses of texting episodes showed that drivers who texted while waiting at a red light spent most of the time looking at their cell phone with a mean maximum glance duration of more than 10 s
- → Potentially unexpected events remain unobserved
- \rightarrow Risk when driving is resumed
- A considerable portion of texting events were concluded far outside the red light episode
- Adverse effects on glance behavior drivers who continued to text showed lowered percentages of outside glances after the traffic light turned green
- → Implications for traffic safety

THANK YOU FOR YOU ATTENTION!

Tina Morgenstern¹, Tibor Petzoldt², Josef F. Krems¹, Frederik Naujoks³ & Andreas Keinath³

¹ Technische Universität Chemnitz, Germany
² Technische Universität Dresden, Germany
³ BMW Group, Germany

ALLGEMEINE UND ARBEITSPSYCHOLOGIE TU CHEMNITZ

REFERENCES

Alm, H., & Nilsson, L. (1993). Changes in driver behavior as a function of handsfree mobile phones - a simulator study. Accident Analysis and Prevention, 26(4), 441-451.

Beede, K. E., & Kass, S. J. (2006). Engrossed in conversation: The impact of cell phones on simulated driving performance. Accident Analysis and Prevention, 38, 415-421.

Carsten, O., Hibberd, D., Bärgman, J., Kovaceva, J., Pereira Cocron, M. S., Dotzauer, M., Utesch, F., ..., Forcolin, F. (2017). UDRIVE Deliverable D43.1: Driver Distraction and Inattention. Retrieved from www.UDrive.eu Castermans. J. (2017). UDRIVE Deliverable D30.1: Overview of the Data Collection. Retrieved from www.UDrive.eu

DIN Deutsches Institut für Normung e. V. (2014). Measurement of driver visual behaviour with respect to transport information and control systems - Part 1: Definitions and parameters (ISO 15007-1:2014).

Dingus, T. A., Guo, F., Lee, S., Antin, J. F., Perez, M., Buchanan-King, M., & Hankey, J. (2016). Driver crash risk factors and prevalence evaluation using naturalistic driving data. *Proceedings of the National Academy of Sciences*, 113(10), 2636–2641.

Haigney, D. E., Taylor, R. G., & Westerman, S. J. (2000). Concurrent mobile (cellular) phone use and driving performance: task demand characteristics and compensatory processes. Transportation Research Part F, 3, 113-121.

Hosking, S., Young, K. L., & Regan, M. A. (2007). The effects of text messaging on young novice driver performance. In I. J. Faulks, M. Regan, M. Stevenson, J. Brown, A. Porter, & J. D. Irwin (Eds.), *Distracted driving* (pp. 582–592). Sydney, NSW: Australasian College of Road Safety.

Huisingh, C., Griffin, R., & McGwin Jr, G. (2015). The prevalence of distraction among passenger vehicle drivers: a roadside observational approach. Traffic injury prevention, 16(2), 140-146.

Huth, V., Sanchez, Y., & Brusque, C. (2015). Drivers' phone use at red traffic lights: A roadside observation study comparing calls and visual-manual interactions. Accident Analysis and Prevention, 74, 42-48.

Ishida, T., & Matsuura, T. (2001). The effect of cellular phone use on driving performance. IATSS Research, 25(2), 6–14. http://doi.org/10.1016/S0386-1112(14)60065-0

Kidd, D. G., Tison, J., Chaudhary, N. K., McCartt, A. T., & Casanova-Powell, T. D. (2016). The influence of roadway situation, other contextual factors, and driver characteristics on the prevalence of driver secondary behaviors. *Transportation Research Part F, 41*, 1-9.

Naujoks, F., Purucker, C., & Neukum, A. (2016). Secondary task engagement and vehicle automation-Comparing the effects of different automation levels in an on-road experiment. Transportation Research Part F, 38, 67-82.

Nelson, E., Atchley, P., & Little, T. D. (2009). The effects of perception of risk and importance of answering and initiating a cellular phone call while driving. Accident Analysis and Prevention, 41(3), 438-444.

Patten, C. J. D., Kircher, A., Östlund, J., & Nilsson, L. (2004). Using mobile telephones: cognitive workload and attention resource allocation. Accident Analysis and Prevention, 36, 341-350.

Prat, F., Planes, M., Gras, M. E., & Sullman, M. J. M. (2014). An observational study of driving distractions on urban roads in Spain. Accident Analysis and Prevention, 74, 8-16.

Rakauskas, M. E., Gugerty, L. J., Ward, N. J. (2004). Effects of naturalistic cell phone conversations on driving performance. Journal of Safety Research, 35, 453-464.

Simmons, S. M., Hicks, A., & Caird, J. K. (2016). Safety-critical event risk associated with cell phone tasks as measured in naturalistic driving studies: A systematic review and meta-analysis. Accident Analysis & Prevention, 87, 161-169.

Strayer, D. L., & Drews, F. A. (2004). Profiles in driver distraction: effects of cell phone conversations on younger and older drivers. Human Factors: The Journal of the Human Factors and Ergonomics Society, 46(4), 640-649.

Stutts, J., Feaganes, J., Reinfurt, D., Rodgman, E., Hamlett, C., Gish, K., & Staplin, L. (2005). Driver's exposure to distractions in their natural driving environment. Accident Analysis and Prevention, 37, 1093-1101.

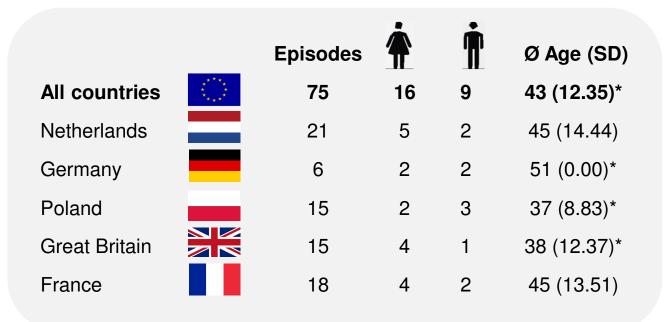
Sullman, M. J. M. (2012). An observational study of driver distraction in England. Transportation Research Part F, 15, 272-278.

Thulin, H., & Gustafsson, S. (2004). Mobile Phone Use while Driving – Conclusions from four investigations (VTI rapport 490A). Linköping: Swedish National Road and Transport Research Institute.

Young, K. L., & Lenné, M. G. (2010). Driver engagement in distracting activities and the strategies used to minimise risk. Safety Science, 48(3), 326-332.

ALLGEMEINE UND

TU CHEMNITZ


ARBEITSPSYCHOLOGIE

BACKUP

DESCRIPTION OF THE TEXTING SAMPLE

* Missing values for age

ALLGEMEINE UND ARBEITSPSYCHOLOGIE TU CHEMNITZ

Ê

