Rear-end Crash Analysis Using SHRP2 Naturalistic Driving Database: Comparing Teen and Adult Crash Frequency and TTC

Author: James Megariotis
Principal Investigator: Helen Loeb Co-Investigator: Thomas Seacrist

Problem
Motor vehicle crashes are the leading cause of death for teens. Previous teen and adult crash rates have been based upon fatal crashes, police reported crashes, and estimated miles driven. The Strategic Highway Research Program 2 (SHRP2) driving database contains extensive real world data on teen and adult driving and offers the opportunity to compute accurate crash rates and study braking behavior using a reliable methodology to capture crashes and driving exposure.

Research Questions
- Do Teens and Adults React Differently in Emergency Situations?
- Do Teens Experience Elevated Crash and Near Crash Rates?
- Why?

Method
- A subset of the SHRP2 dataset was obtained via a data sharing agreement with VTTI Data.
- 3420 Drivers were studied in SHRP2
- 1140 Drivers in teen and adult control group
- Subset contains 1487 crash and near crash events with scene videos, event narratives, and time series data collected at 10 Hz

Data

<table>
<thead>
<tr>
<th>SHRP2 Subset</th>
<th>Trips</th>
<th>Miles Driven</th>
<th>Rear-End</th>
<th>Rear-End Near</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novice Teen</td>
<td>Age: 16 - 19</td>
<td>549</td>
<td>764,845</td>
<td>2,895,783</td>
</tr>
<tr>
<td>Experienced Adult</td>
<td>Age: 35 - 54</td>
<td>591</td>
<td>892,950</td>
<td>2,829,248</td>
</tr>
</tbody>
</table>

Analysis
- Variables of Interest:
 - Event Timestamp, Crash Avoidance Braking Timestamp, Headway Distance at Braking, Relative Velocity at Braking, Time to Collision (TTC) at Braking
 - Crash Avoidance Braking Timestamp was found using pattern recognition algorithm on acceleration time series data (Indicated by the Purple Line in below plot)

Results

<table>
<thead>
<tr>
<th></th>
<th>Rear-End Crashes</th>
<th>Rear-End Near Crashes</th>
<th>Miles Driven</th>
<th>Crash Rate (per million miles)</th>
<th>Near Crash Rate (per million miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novice Teen</td>
<td>Age: 16 - 19</td>
<td>39</td>
<td>42</td>
<td>2,895,783</td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.5</td>
</tr>
<tr>
<td>Experienced Adult</td>
<td>Age: 35 - 54</td>
<td>5</td>
<td>9</td>
<td>2,829,248</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.2</td>
</tr>
</tbody>
</table>

- Crash Rate Ratio (teen/adult): 7.5
- Near Crash Rate Ratio (teen/adult): 4.53
- Novice teens exhibited significantly more rear-end crashes (p < 0.01) and rear-end near crashes (p < 0.05) than experienced adult drivers.

Time to Collision at Braking
- **TTC = Headway Distance / Relative Velocity**
- Only events with valid radar data can be analyzed.
- Novice teens exhibited significantly lower TTC at braking (p < 0.05) in crash scenarios than experienced adult drivers.
- **Median TTC:**
 - Teen = 0.63 seconds
 - Adult = 1.88 seconds
- No significant difference in TTC at braking was observed in near crash scenarios
- Novice teens exhibited significantly lower headway distance at braking (p < 0.05) than experienced adult drivers in near crash scenarios.
- **Headway Distance:**
 - Teen = 9.03 ± 3.93 meters
 - Adult = 13.7 ± 7.62 meters

Discussion
The lower TTC and headway distance exhibited by novice teens at braking could account for the dramatically increased frequency of rear-end crashes and near crashes.

Acknowledgements
- Children’s Hospital of Philadelphia, Center for Injury Research and Prevention (CIRP)
- Children’s Hospital of Philadelphia, Center for Child Injury Research Prevention (cCHIPS)
- National Science Foundation (NSF)