# Research Utilizing the SHRP2 Safety Data to Support Highway Safety - The Development of New Insights into **Driver Behavior to Improve High Visibility Highway Safety Enforcement (HVE) Programs**





#### **Goals**:

- Improve High Visibility Enforcement (HVE) programs to reduce speeding and aggressive driving
- Demonstrate, *in this Phase 1 effort*, the availability and applicability of SHRP2 NDS data to explore factors affecting HVE effectiveness

### **Objectives:**

- Identify HVE aggressive driving programs conducted in Erie County, NY during the SHRP2 data collection program
- Define quantitative aggressive driving observables and metrics consistent with SHRP2 NDS data
- Acquire data and perform statistical analyses to identify significant variables affecting the success of the HVE programs



#### **Background:**

- HVE programs are one possible approach to improve roadway safety
- Shown to be effective in:
  - Seat Belt use
  - Distracted Driving
  - Pedestrian Right of Way
- Results of HVE long term effectiveness less clear
- Crash data or tickets issued before/after frequently used for evaluation
- Examine driver behavior through enforcement zones before, during, and after HVE

John Pierowicz<sup>1</sup>, Panagiotis Ch. Anastasopoulos Ph.D.<sup>2</sup>, Alan Blatt<sup>1</sup>, Md Tawfiq Sarwar Ph.D.<sup>2</sup>, Kevin Majka Ph.D.<sup>1</sup>, Sarvani Sonduru Pantangi<sup>2</sup>, and Craig Thor, Ph.D.<sup>3</sup> CUBRC<sup>1</sup>, University at Buffalo, State University of New York<sup>2</sup>, FHWA<sup>3</sup>



- Focused on 5 aggressive driving behaviors:
  - Speeding
  - Tailgating
  - Failure to obey traffic control device
  - Failure to yield right-of-way
  - Failure to signal lane change
- Defined speed and tailgating metrics capturing magnitude and duration





- Random parameters linear regression models were estimated for speeding and tailgating
- Random parameters binary logit models were estimated for 'other' aggressive driving types
- All models were estimated through the use of random effects to account for panel effects



The State University of New York



#### **Results**:

Speeding behavior affected by:

- Vehicle type and age (sedans/compact; newer vehicles = less speeding)
- Driver's age (Younger drivers = more speeding)
- Time of day (Increased speeding at dawn or dusk)

Tailgating behavior affected by:

- Age of vehicle (Older vehicles = less tailgating)
- Driver Gender and Age (Older female drivers = more tailgating)

'Other' aggressive driving behavior affected by:

Age of vehicle (newer vehicles = more aggressive driving behavior incidents)

## HVE programs analyzed resulted in reduced speeding and other types of aggressive driving behavior

Tailgating results were not statistically significant



#### **Conclusions:**

- Sufficient trips before, during, and after the HVE exist to support analyses
- Methodology successfully established to identify aggressive driving behavior observables
- Unique metrics defined for identifying the magnitude and duration speeding and tailgating behaviors
- Statistical analysis methods support the evaluation of HVE effectiveness

