

Investigate Moped-Vehicle Conflicts in China Using a Naturalistic Driving Study Approach

Yi Glaser, General Motors Company Feng Guo, Virginia Tech Transportation Institute Youjia Fang, Virginia Tech Transportation Institute Bing Deng, General Motors Company Jonathan Hankey, Virginia Tech Transportation Institute

Mopeds in Shanghai

Shanghai regulations

		Max Speed	Engine displacement	Driver's License	Vehicle registration	Designated driving lane	Limitations	
	Motorcycles	>50km/h	> 50 cc	Yes	Yes	Motor vehicle lane		
	Scooters	>20km/h <50km/h	< 50 cc	Yes	Yes	Motor vehicle lane	Forbidden on speedways, major bridges, tunnels, etc.	
	Mopeds	<20km/h	-	No	Yes	Non-motor vehicle lane		

- On roads without non-motor vehicle lanes, E-bikes should use the right side of the lane (1.5 meter to the right lane marking)
- Gas-powered mopeds are banned in Shanghai since 2016
- Most mopeds (>80%) have max speed over 20km/h

Mopeds in Shanghai

- Moped is a very popular transportation mode in China
 - More than 3 million "mopeds" in Shanghai vs. 2.7 million motor vehicles (2011).
 - In 2013, 185 million e-bikes in China vs. 137 million vehicles (Chinese Cycling Association).

Crash data

- 37% of all crashes and 27% of all crash fatalities in Shanghai in 2010-2011 were associated with moped.
- E-bike fatalities in China (China surface transportation crash statistics annual report)

Study goals

- Exploring Chinese moped-vehicle conflict configurations;
- Examining car driver responses to moped-vehicle conflicts.

Shanghai Naturalistic Driving Study

Netional Surface Transportation Safety Center for Excellence

Shanghai Naturalistic Driving Study

- The study collected data from 60 drivers (100,000 vehicle miles). Each driver drove one vehicle for 2 months.
- Data used in this analysis
 - 36 drivers
 - 2,878 hours of driving, approximately 50,000 total vehicle miles

Shanghai Naturalistic Driving Study

• VTTI Data Acquisition System (DAS)

Drivers' demographics

• 28 males vs. 8 females (Registered drivers in China (2015): male 74%; SHRP2: Female 51.9% vs. male 48.1%)

8

4-6

7-9

Driving Experience

10-12

Mean = 38 years old

(In comparison: SHRP2: 37% older than 50 years old)

(Registered drivers in China (2015): 11% have less than a year driving experience)

12

10

8

6

4

2

0

<=3

Number of Subjects

Mean = 7 years

2

16-18

2

13-15

Identify moped-vehicle conflicts

Kinematic trigger	Threshold			
Longitudinal deceleration	0.65g (SHRP 2), 0.5g, 0.4g			
Lateral acceleration	(SHRP 2)			
Longitudinal jerk	(SHRP 2)			
Steering evasive maneuver	(SHRP 2)			
Swerve evasive maneuver	(SHRP 2)			
Yaw rate	(SHRP 2)			

Due to a improper DAS setup in one vehicle, 45 SCEs associated with this vehicle had a lower actual deceleration (i.e., <0.4g) than the recorded deceleration. These events are referred to as "low g-force conflicts". The other events are "high g-force conflicts" (i.e., >0.4g)

Identify moped-vehicle conflicts

			Trigger		Moped–	G-force offset check	
Final data: 119 moped-vehicle conflicts			Trigger type	Threshold	vehicle conflict	Low g-force conflicts	High g-force conflicts
• A total of 74 high g-force				0.65g	6	1 (1 trip)	5 (5 trips)
conflicts.	Longitudinal —		Longitudinal	0.5g 0.4g	37	26 (8 trips)	11 (11 trips)
 Conflict rate (g force > 0.65 or evasive steering) is 			deceleration		9	0	9 (9 trips)
0.14 per a thousand miles.					65	18 (7 trips)	47 (45 trips)
	ļ		Longitudinal jerk	SHRP 2	0	o	0
• Only 2 conflicts were identified due to driver's			Lateral acceleration	SHRP 2	0	0	0
evasive <i>lateral</i> response.			Steering evasive maneuver	SHRP 2	2	o	2 (2 trips)
available steering space	Lateral		Swerve evasive maneuver	SHRP 2	0	o	0
			Yaw rate	SHRP 2	0	0	0
						45	74
			(Tot	(Total)		(8 trips,	(71 trips,
	L					1 driver, 1 vehicle)	28 drivers, 5 vehicles)

Fifth International Symposium on Naturalistic Driving Research

 22 configurations were found

1st row: Conflict type category code;

2nd row: Number of conflicts among all 119 moped–vehicle conflicts;

3rd row: Number of conflicts among 74 high g-force conflicts.

Road users often do NOT follow traffic rules

The most common moped-vehicle conflict configuration. (Germany: Hummel et al., 2001; Australia: Blackman & Haworth, 2013; California, Salatka et al., 1990)

Moped

Vehicle

1st row: Conflict type category code;

- 2nd row: Number of conflicts among all 119 moped-vehicle conflicts;
- 3rd row: Number of conflicts among 74 high g-force conflicts.

In Shanghai, mopeds should use non-motor vehicle lanes, but moped drivers take motor vehicle lanes frequently to avoid objects in their own lanes.

Video Redacted

This is a unique configuration that has not been reported as a common configuration in western countries.

Many configurations can be attributed to moped or vehicle traffic violations.

Another video

Video Redacted

Discussion

- The first analysis using naturalistic driving data to examine vehicle-moped conflicts.
- This study is based on a very small sample.
- Data were collected in Shanghai urban area only.

Acknowledgements

Xuesong Wang, Tongji University; Carl Cospel, Virginia Tech Transportation Institute; Bing Deng, General Motors; Andy Peterson, Virginia Tech Transportation Institute; Feng Guo, Virginia Tech Transportation Institute; Lanfang Zhang, Tongji University

Thank you for your attention

