Investigate Moped-Vehicle Conflicts in China Using a Naturalistic Driving Study Approach

Yi Glaser, General Motors Company
Feng Guo, Virginia Tech Transportation Institute
Youjia Fang, Virginia Tech Transportation Institute
Bing Deng, General Motors Company
Jonathan Hankey, Virginia Tech Transportation Institute
Mopeds in Shanghai

• Shanghai regulations

<table>
<thead>
<tr>
<th></th>
<th>Max Speed</th>
<th>Engine displacement</th>
<th>Driver’s License</th>
<th>Vehicle registration</th>
<th>Designated driving lane</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorcycles</td>
<td>>50km/h</td>
<td>> 50 cc</td>
<td>Yes</td>
<td>Yes</td>
<td>Motor vehicle lane</td>
<td></td>
</tr>
<tr>
<td>Scooters</td>
<td>>20km/h</td>
<td>< 50 cc</td>
<td>Yes</td>
<td>Yes</td>
<td>Motor vehicle lane</td>
<td>Forbidden on speedways, major bridges, tunnels, etc.</td>
</tr>
<tr>
<td>Mopeds</td>
<td><20km/h</td>
<td>-</td>
<td>No</td>
<td>Yes</td>
<td>Non-motor vehicle lane</td>
<td></td>
</tr>
</tbody>
</table>

• On roads without non-motor vehicle lanes, E-bikes should use the right side of the lane (1.5 meter to the right lane marking)
• Gas-powered mopeds are banned in Shanghai since 2016
• Most mopeds (>80%) have max speed over 20km/h
Mopeds in Shanghai

• Moped is a very popular transportation mode in China
 • More than 3 million “mopeds” in Shanghai vs. 2.7 million motor vehicles (2011).
 • In 2013, 185 million e-bikes in China vs. 137 million vehicles (Chinese Cycling Association).

• Crash data
 • 37% of all crashes and 27% of all crash fatalities in Shanghai in 2010-2011 were associated with moped.
 • E-bike fatalities in China (China surface transportation crash statistics annual report)

In 2014, US fatality rate:
All vehicle: 1.2;
Rate per 10,000 registrations
Study goals

- Exploring Chinese moped-vehicle conflict configurations;
- Examining car driver responses to moped-vehicle conflicts.
Shanghai Naturalistic Driving Study

GM: Testing Vehicles

5 vehicles:
1 Cadillac DTS
2 Buick LaCrosse
2 Chevrolet Cruze

3 Years data collection period (2012-2015)

Tongji: Equipment; Data collection; Analysis

VTTI: DAS Technical Support; Data processing and management; Study design and analysis

STSCE International NDS project
Shanghai Naturalistic Driving Study

• The study collected data from 60 drivers (100,000 vehicle miles). Each driver drove one vehicle for 2 months.

• Data used in this analysis
 • 36 drivers
 • 2,878 hours of driving, approximately 50,000 total vehicle miles
Shanghai Naturalistic Driving Study

• VTTI Data Acquisition System (DAS)

DAS schematic view

• high-resolution kinematic sensors,
• four video cameras,
• one forward radar,
• the vehicle network
Drivers’ demographics

- 28 males vs. 8 females
 (Registered drivers in China (2015): male 74%; SHRP2: Female 51.9% vs. male 48.1%)

Mean = 38 years old

(In comparison: SHRP2: 37% older than 50 years old)

Mean = 7 years

(Registered drivers in China (2015): 11% have less than a year driving experience)
Identify moped-vehicle conflicts

<table>
<thead>
<tr>
<th>Kinematic trigger</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal deceleration</td>
<td>0.65g (SHRP 2), 0.5g, 0.4g</td>
</tr>
<tr>
<td>Lateral acceleration</td>
<td>(SHRP 2)</td>
</tr>
<tr>
<td>Longitudinal jerk</td>
<td>(SHRP 2)</td>
</tr>
<tr>
<td>Steering evasive maneuver</td>
<td>(SHRP 2)</td>
</tr>
<tr>
<td>Sway evasive maneuver</td>
<td>(SHRP 2)</td>
</tr>
<tr>
<td>Yaw rate</td>
<td>(SHRP 2)</td>
</tr>
</tbody>
</table>

Due to an improper DAS setup in one vehicle, 45 SCEs associated with this vehicle had a lower actual deceleration (i.e., <0.4g) than the recorded deceleration. These events are referred to as “low g-force conflicts”. The other events are “high g-force conflicts” (i.e., >0.4g)
Identify moped-vehicle conflicts

Final data: 119 moped-vehicle conflicts

- A total of 74 high g-force conflicts.

- Conflict rate (g force > 0.65 or evasive steering) is 0.14 per a thousand miles.

- Only 2 conflicts were identified due to driver’s evasive lateral response.
 - Congested traffic allows no available steering space
22 configurations were found

1st row: Conflict type category code;
2nd row: Number of conflicts among all 119 moped–vehicle conflicts;
3rd row: Number of conflicts among 74 high g-force conflicts.
Chinese moped-vehicle conflict configurations

- Road users often do NOT follow traffic rules

The most common moped-vehicle conflict configuration.
(Germany: Hummel et al., 2001; Australia: Blackman & Haworth, 2013; California, Salatka et al., 1990)
14

Chinese moped-vehicle conflict configurations

<table>
<thead>
<tr>
<th>Access and T-junction (9/119) (8/74)</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Straight Road (55/119, 46.2%) (24/74, 32.4%)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td>39</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>12</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

1\(^{st}\) row: Conflict type category code;
2\(^{nd}\) row: Number of conflicts among all 119 moped–vehicle conflicts;
3\(^{rd}\) row: Number of conflicts among 74 high g-force conflicts.
Chinese moped-vehicle conflict configurations

- In Shanghai, mopeds should use non-motor vehicle lanes, but moped drivers take motor vehicle lanes frequently to avoid objects in their own lanes.

Video Redacted

This is a unique configuration that has not been reported as a common configuration in western countries.
Chinese moped-vehicle conflict configurations

Many configurations can be attributed to moped or vehicle traffic violations.
Another video

Video Redacted
Discussion

• The first analysis using naturalistic driving data to examine vehicle-moped conflicts.
• This study is based on a very small sample.
• Data were collected in Shanghai urban area only.
Acknowledgements

Xuesong Wang, Tongji University;
Carl Cospel, Virginia Tech Transportation Institute;
Bing Deng, General Motors;
Andy Peterson, Virginia Tech Transportation Institute;
Feng Guo, Virginia Tech Transportation Institute;
Lanfang Zhang, Tongji University

Thank you for your attention