

Automated Recognition of rear seat occupants' head position using Kinect™

Helen Loeb PhD Children's Hospital of Philadelphia

Kristy Arbogast PhD¹, Jinyong Kim PhD¹, Jonny Kuo MS², Sjaan Koppel PhD², Suzanne Cross MS², Judith Charlton PhD²

¹Center for Child Injuries Prevention Studies (CChIPS), Children's Hospital of Philadelphia ²Monash University Accident Research Centre, Melbourne, Australia **CChIPS | Center for Child Injury Prevention Studies**

Background

- Child Restraint Systems typically evaluated using optimally positioned ATDs
- Real life: Children move: seat belt gets Out Of Position (OOP)

Sitting posture and belt position

- On-road driving situations voluntary posture
 Activity, Comfort/Discomfort, Possibilities to move freely
- Critical events / maneuvers involuntary posture
 Vehicle movement

Child's behavior

Vehicle sudden Maneuver

New Area of Research – Naturalistic Observation Test track versus Every-Day paradigm

- **Test track and/or scripted maneuvers** in instrumented vehicle
 - Andersson M et al. Effect of Booster Seat Design on Children's Choice of Seating Positions during Naturalistic Riding. AAAM, 2010.
 - Jakobsson L et al. Older Children's Sitting Postures when Riding in the Rear Seat. IRCOBI Conference, 2011
 - Bohman K, et al. Kinematics And Shoulder Belt Position Of Child Rear Seat Passengers During Vehicle Maneuvers. AAAM, 2011.
 - Stockman I et al. Kinematics of Child Volunteers & Child ATDs During Emergency Braking Events in Real Car Environment.TIP 2013.
 - Stockman I et al. Kinematics and Shoulder Belt Position of Child ATDs During Steering Maneuvers. TIP 2013.
 - Osvalder et al. Older Children's Seating Postures, Behavior and Comfort Experience During Ride. IRCOBI 2013.
- Every day use: naturalistic study
 - Charlton J et al. How Do Children Really Behave in Restraint Systems While Travelling in Cars? AAAM, 2010.

Multi-Center Naturalistic Study

Short term Goal: Develop **data collection and analysis methods** to observe/quantify position and posture of children while riding.

Long term Goal: Observe/quantify the injury effects of suboptimal positions.

Who	What	When
Children Hospital Of Philadelphia	Development of Kinect data collection software	August 2012 – January 2013
Monash University (Australia)	Study of children through instrumentation of 2 vehicles, for 2 weeks to 42 families.	August 2013 – October 2014
Children Hospital Of Philadelphia	Development of Kinect data collection software.Data analysis of logged data	October 2014 – April 2016
Autoliv Research (Sweden)	Sled test program with ATD to examine injury effects of sub-optimal positions	March 2016- June 2016

Vehicle instrumentation

2 cars: 2006 Holden Statesman & 2007 Holden Calais

DAQ: Vbox (GPS, vehicle velocities, acceleration...)

Embedded PC + External Hard Drive

Kinect for Windows

Mobileye_{TM}

6 cameras throughout vehicle

Forward scene camera

Interior cameras

Rear passenger camera

Camera Views

VBOX2 - captured driver/passenger data

VBOX1 – captured child data

Motion analysis with Microsoft Kinect™

- Gaming Nov 2010
- RGB camera
- Depth sensor
 - Infrared laser projector combined with a monochrome CMOS sensor, captures video data in 3D.
- Angular field of view of 57°horizontally and 43° vertically
- Up to 30 frames per sec
- Inexpensive ~\$250

KINECT for Merseott Windows

Kinect [™] Setup

- Automated start up, storing of data and shut down on vehicle ignition on/ignition off.
- Settings:
 - -Near mode (500 mm to 3000 mm)
 - -Seated mode
 - Color images 640x480 pixels (1 Hz)
 - Depth images 640x480 pixels (1 Hz)
- Collected 3D location of head, neck and shoulders of up to 2 seated rear row occupants
 - -x/y resolution of 3 mm
 - -Z resolution of 1 cm

Data Collection

• Participants

-42 families recruited over 14 months.

- Methods
 - -Vehicle dropped off for 2 weeks-briefing session
 - -1 week data check
 - Vehicle pick up debriefing
 - Demographic and Behavioral surveys

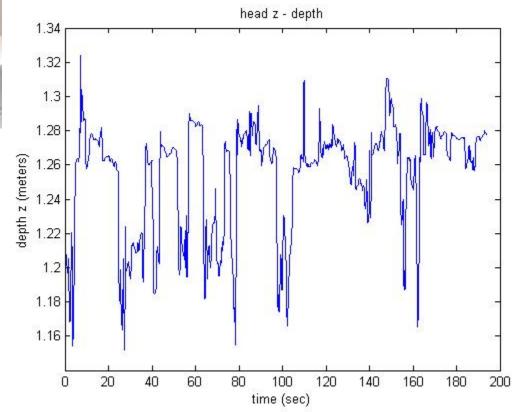
Kinect Data Collected

- 18 families from Statesman vehicle:
 - -1038 trips in Kinect-equipped vehicle
 - 690 hours of data
 - -Average trip length ~ 10 min
 - -Valid trips = a child present, travel >200m
 - 554 valid trips

Kinect Data Processing Initial Efforts

- Plan A1
 - Utilize built-in skeletal tracking system of Kinect
- Plan A2
 - Identify frame of reference (baseline 'perfect sitting') and pixel depth distribution in region of interest
 - Manually review to confirm
- Plan B
 - Background subtraction process that filters out the vehicle seat and restraint from image
 - Look for circular shapes to identify head

Kinect data processing


 Plan A1 = Kinect skeleton tracking -> x,y,z location of head/shoulders

• Depth of head motion quantified

CChIPS | Center for (

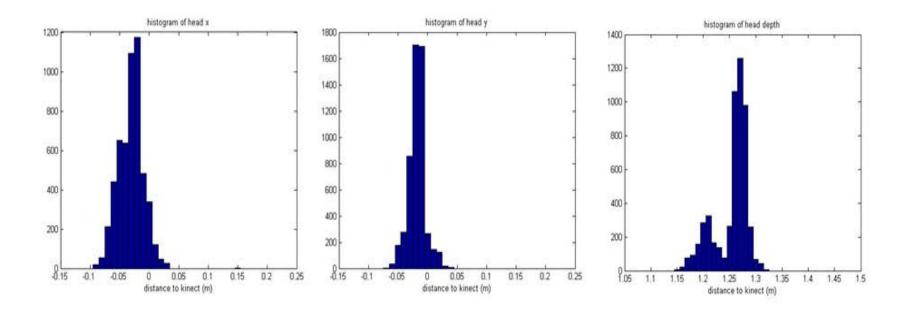
Plan A1 results

Great variability.

-Kinect algorithm unable to reliably recognize head -Multiple skeletons seems unreliable

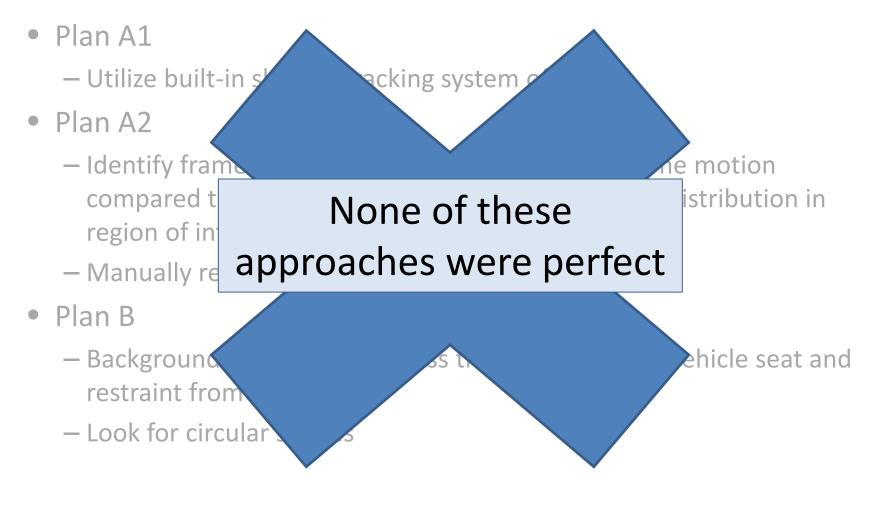
Skeleton sometimes absent

(sun reflection, confusion with head rest)


Validation Study

- 5% random sample of trips (~85 trips)
- Question: how often does the built-in skeleton recognition software accurately identify the head of the occupant of interest?
- Validation by comparing to manual frame coding.
- Skeletal data was present 68% of the time and of those, 3D head position was successfully detected in approximately 41%
 - ~30% of trips had valid head position data
 - For total sample, estimated at ~350 trips, 150K images

Kinect preliminary results


• One complete validated trip

Head depth distribution is bi-modal for Child Restraint System with wings.

Kinect Data Processing Initial Efforts

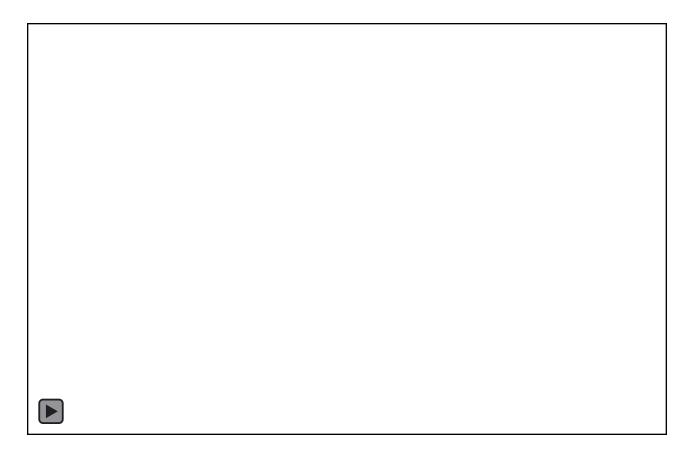
Final Analytic Process

Review each Kinect color image

• Via custom software

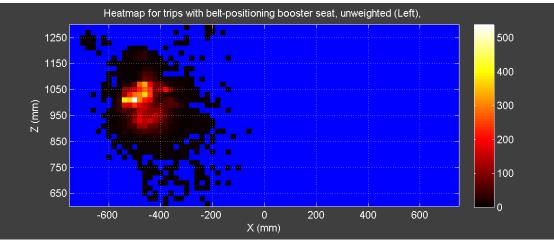
• 0.5 Hz

Manually identify location of head by clicking


- Identifies x, y position of the head from Kinect data
- Converted from image space to actual dimensions

Extract z position (depth) corresponding to that x, y

 From Kinect depth data


Systematic analytic process

"Heatmap" of Head Position

- Looking from above
- X-axis left right position; Z-axis fore-aft position
- Color represents frequency of specific positions

Results will be presented at the 60th Annual Conference of the Association for the Advancement of Automotive Medicine (AAAM) in Hawaii, September 17-21 2016.

CChIPS | Center for Child Injury Prevention Studies

n=3

Sled tests

 Sled tests with ATD positioned in several of the OOP postures observed in naturalistic study

- Conducted at Autoliv Research, Sweden

- Specifics of tests guided by set of preliminary tests conducted by Britax Australia (less complex sled, P-series ATD)
- Data collected included on board high speed video, ATD head/neck/chest metrics, belt forces, sled acceleration
- Analysis underway.

Conclusion

- Range of head positions for restrained child occupants quantified for the first time in a naturalistic setting
- Data can lead to solutions for optimal protection for those who assume positions that differ from standard test positions

Acknowledgements

- Danielle Weiss, Christian Parker, Alex Gobeler (CHOP)
 for manual head tracking and programming
- Funding from the Australian Research Council LP110200334

Center for Child Injury Prevention Studies

CChIPS (NSF Industry University Cooperative Research Center I/UCRC) provided complementary funding for 3 years.

Automated Recognition of rear seat occupants' head position using Kinect™

Helen Loeb PhD Children's Hospital of Philadelphia

Thank you!

Questions?