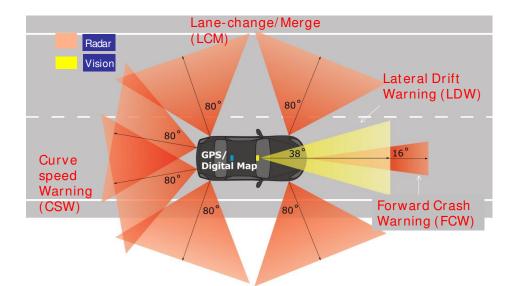
Examination of drivers' cell phone use behavior at intersections by using naturalistic driving data

Huimin Xiong, **Shan Bao**, Kazuma Kato, James Sayer 8/26/2014

4th Naturalistic Driving Research Symposium Blacksburg, VA

Introduction

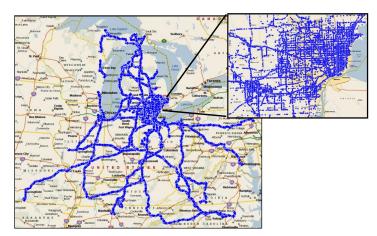
- Driving simulator studies of cell phone-related distraction
 - Driving performance decreased and crash risk assumed to increase (Drews, et al., 2009; Liang & Lee, 2010)
 - Decrements in lane-keeping, increases in speed variability (*Crisler, et al., 2008*)
 - Increases in following distance variability (*Hosking,* et al., 2009; Owens, et al., 2011)
- Survey study of cell phones and safety
 - Cell phone use steadily increased while crash rates declined during the same time period (Insurance Institute for Highway Safety, 2010).

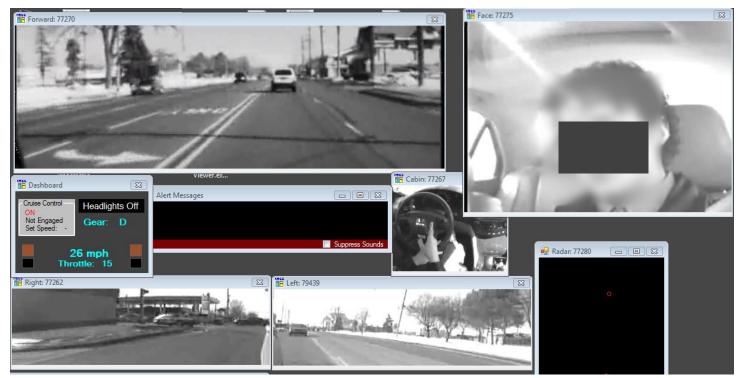

Research Question

- How driver behave when they use cellphone
 - Naturalistic driving environment
 - Specific scenario: go through signalized intersections
 - Driving performance: speed
 - Situational factors: lighting conditions, traffic conditions

Data Resources: IVBSS

- Naturalistic driving data from Integrated vehicle based safety system (IVBSS) program
 - 5-year long program
 - Integrated four types of warnings FCW, LDW, LCM, and CSW
 - 16 instrumented research vehicles (2006 Honda Accord)
 - 108 drivers (6 weeks of driving for each)
 - Younger drivers (M=25.2; SD=2.9)
 - Middle-aged drivers (M= 46.0; SD=3.0)
 - Older drivers (M= 64.6; SD=2.8)

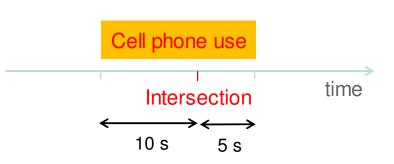

IVBSS: Instrumented vehicles



IVBSS: Data Collection

- April 2009 to April 2010
- Data from 108 drivers
- Data Set
 - Over 213K miles
 - 23K trips
 - 6,200 hours
 - 600 data channels
 - 5 video channels

IVBSS: Video Data


Trained coders went through one week video data, 1381 conversations, 2149 Visual/Manual (VM) tasks

Method

- Case Control Study
 - Case: went through signalized intersections
 - Control: match on the same driver and intersection
- One way ANOVA
 - Test average, maximum and minimum driving speed between cell phone use and baseline (driving only)
- Mixed model
 - Dependent variable: average speed
 - Explanatory variables: traffic condition and lighting condition (situational factors), cellphone use condition

15 s Samples for Going Through Signalized Intersections

- Signalized intersections were identified based on HPMS data base
- Baselines were matched based on driver and intersection
- Min speed over 15 s (10s before the intersection + 5 s after) > 8.9 m/s=20mph
- Conversation (453), baseline (647)
- VM (141), baseline (149)

Results: Conversation

- ANOVA for conversation and baseline
 - Significant differences on max and mean speed
 - No significant differences on minimum speed
 - The differences were small (but over 15 seconds of driving)

Speed	Difference m/s(mph)	p-value
Maximum	0.67 (1.50)	<0.001
Mean	0.43 (0.96)	0.05
Minimum	0.22 (0.49)	0.35

Results: Conversation (Cont.)

- Mixed model showed the consistent results
 - Drove slower with conversation
 - Lighting situation not significant
 - Significant interaction between traffic and conversation

Factors	Estimates	SE	p-value
Intercept	18.33	0.38	<0.01
Conversation	-0.67	0.24	<0.01
Moderatetraffic	-0.74	0.24	<0.01
Densetraffic	-0.53	0.33	n.s.
Conversation : Moderate traffic	0.11	0.31	n.s.
Conversation : Dense traffic	1.12	0.54	0.04

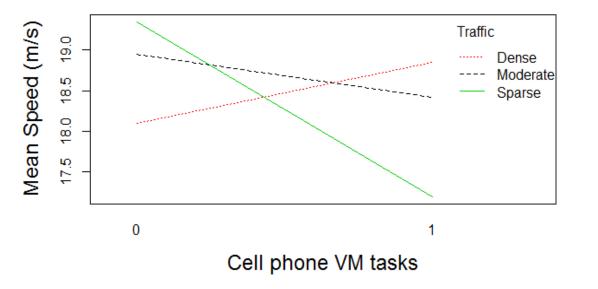
Results: Conversation (Cont.)

- ANOVA for each traffic condition
- Sparse and moderate had similar pattern, lower speed with conversation compared with baseline
 - Relative balanced sample size
 - Sparse: Δ_{B-C}=0.43 m/s, p=0.02
 - Moderate: Δ_{B-C}=0.67 m/s, p=0.005
- Dense had opposite pattern, higher speed with conversation
 - Δ_{B-C}=-0.75 m/s, p=0.43
 - 47 conversation (10%), 107 baseline

Results: VM Tasks

- ANOVA for VM tasks and baseline
 - Significant differences on max and mean speed
 - No significant differences on minimum speed
 - The differences were greater

Speed	Difference m/s(mph)	p-value
Maximum	1.36 (3.04)	0.005
Mean	1.24 (2.77)	0.004
Minimum	0.84 (1.88)	0.9


Results: VM Tasks (Cont.)

- Mixed model showed the consistent results
 - Drove slower with VM tasks
 - Lighting situation not significant
 - Significant interaction between traffic and VM tasks

Factors	Estimates	SE	p-value
Intercept	18.97	0.58	⊲0.01
VMtasks	-1.76	0.49	⊲0.01
Moderatetraffic	0.27	0.57	n.s.
Dense traffic	-0.72	0.80	n.s.
VM : Moderate traffic	: 0.79	0.79	n.s.
VM : Dense traffic	2.54	1.08	0.02

Results: VM Tasks (Cont.)

- Sparse and moderate: lower speed with VM tasks
 - Sparse: Δ_{B-T}=2.15 m/s, p<0.01
 - Moderate: Δ_{B-T}=0.53 m/s, p=0.1
- Dense: higher mean speed with VM tasks, Δ_{B-T}=-0.74 m/s, p=0.46, 18 VM

Discussion

- Adaptive behavior
 - Reduced speed more with VM vs Conversations
 - Adapt their behaviors to compensate for higher driving demand
 - Significantly much lower speed with VM tasks under sparse traffic
 - Drivers engage in VM tasks in low demand situations (sparse traffic)
 - Reduced speed as well to compensate for the increased demand from secondary tasks

Discussion

- Adaptive behavior
 - Speed increase but not significant with cellphone use under dense traffic
 - Few cellphone use events under dense traffic, drivers might avoid to use cellphone under high driving demand situations
 - Two participants contributed most of cellphone use events, might be risker drivers
 - Maintain traffic flow which might cause increased driving demand
 - Further examinations are needed with larger sample size

Future Work

- No critical situations occurred in this one week driving duration
- Future analysis could focus on safety critical events, such as crash or near crash events

Questions?

Huimin Xiong: xionghm@umich.edu Shan Bao: <u>shanbao@umich.edu</u> Jame Sayer: <u>jimsayer@umich.edu</u>

