LiDAR: Another Potential Data Source

Leslie C. Harwood, Project Associate (CAAR)
Zac Doerzaph, Director (CAAR)
Problems Assessing Visibility

- How can we assess visibility in situations where the roadway infrastructure occludes a driver’s view?
 - At intersections/around corners
 - Around horizontal curves
 - Over vertical curves

- Previous methods have included:
 - Video reduction
 - Road surveys
LiDAR — What?

- What is LiDAR?
 - Light Detection and Ranging
 - A remote sensing method used to examine the surface of the earth

- How is it collected?
 - Often by air
 - Uses a pulsed laser to measure ranges to the surface of the earth
 - Captures:
 - “Top” of vegetation, built-environment
 - Surface of the earth
 - Multiple pulses which penetrate through vegetation
 - Point-clouds
Challenges...

- Requires expert knowledge and specialized software
- Not available in all areas
- Can be difficult and costly to obtain
- Requires ability to handle extremely large datasets
LiDAR — How?

How can we use it?

- Create:
 - Digital Elevation Models (DEM)
 - Bare-earth model
 - Digital Surface Models (DSM)
 - Vegetation and built-environment

- Collect:
 - Naturalistic or other driving data including GPS locations

- Derive:
 - Driver eye-heights from vehicles used
 - Vehicle representations along path
LiDAR – How?

➢ How can we use it?
 ◦ Analyze:
 ◦ Visibility at intersections
 ◦ Visibility around horizontal curves
 ◦ Visibility over vertical curves
 ◦ ...and more
 ◦ Decide:
 ◦ Use results from these analyses to make decisions about:
 ◦ Roadway design
 ◦ Vehicle design
 ◦ How emerging technologies can overcome visibility issues
 ◦ Etc.
Measuring Visibility

- Driver eye height
 - Centroid of driver eye positions from ground (Sivak, et. al., 1996):
 - Cars: 1.11 meters
 - Light Trucks/Vans: 1.42 meters

- Driver Field of Vision:
 - ~180° (Lockhart, et. al., 2009)
Measuring Visibility

Vehicle width
- Average widths (Edmunds.com, 2007):
 - Sedan Compact: 1.75 meters
 - Sedan Midsize: 1.81 meters
 - Sedan Large: 1.91 meters
 - SUV Compact: 1.80 meters
 - SUV Midsize: 1.87 meters
 - SUV Large: 1.99 meters

Vehicle height
- Average heights (Edmunds.com, 2007):
 - Sedan Compact: 1.46 meters
 - Sedan Midsize: 1.46 meters
 - Sedan Large: 1.49 meters
 - SUV Compact: 1.73 meters
 - SUV Midsize: 1.77 meters
 - SUV Large: 1.91 meters
Urban Intersection Visibility

- Assess visibility from a stop bar of cross-traffic in an urban environment including multiple-story buildings and some vegetation.

- Methods for analysis:
 - Create vehicle paths
 - Model vehicle and driver eye-height
 - Model Topography
Urban Intersection Visibility

- Analyze visibility
 - Visibility along sight lines
 - Identify first partial-car visible from driver’s POV (orange)
 - Identify first full-car visible from driver’s POV (blue)
 - Calculate distances

- Further Analysis:
 - Time to Intersection (TTI)
 - Roadway is 25mph

<table>
<thead>
<tr>
<th>Distance to</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Visible Partial-Car</td>
<td>26 meters</td>
</tr>
<tr>
<td>First Visible Full-Car</td>
<td>24 meters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TTI to</th>
<th>Along Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Visible Partial-Car</td>
<td>2 seconds</td>
</tr>
<tr>
<td>First Visible Full-Car</td>
<td>1.7 seconds</td>
</tr>
</tbody>
</table>
Horizontal Curve Visibility

- Assess visibility within a curve in a rural environment including heavy vegetation and some buildings.

- Methods for analysis:
 - Create vehicle paths
 - Model vehicle and driver eye-height
 - Model Topography
Horizontal Curve Visibility

- Analyze visibility
 - Visibility along sight lines
 - Identify first partial-car visible from driver’s POV (orange)
 - Identify first full-car visible from driver’s POV (blue)
 - Calculate distances

- Further Analysis:
 - Time to Collision (TTC)
 - Roadway is 25mph

<table>
<thead>
<tr>
<th>Distance to</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Visible Full-Car</td>
<td>58 meters</td>
</tr>
<tr>
<td>Last Visible Partial-Car</td>
<td>62 meters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TTC to</th>
<th>Along Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Visible Full-Car</td>
<td>5.2 seconds</td>
</tr>
<tr>
<td>Last Visible Partial-Car</td>
<td>5.5 seconds</td>
</tr>
</tbody>
</table>
Vertical Curve Visibility

- Assess visibility within a curve in a rural environment including heavy vegetation and some buildings.

- Methods for analysis:
 - Create vehicle paths
 - Model vehicle and driver eye-height
 - Model Topography
Vertical Curve Visibility

- Analyze visibility
 - Visibility along sight lines
 - Identify first partial-car visible from driver’s POV (orange)
 - Identify first full-car visible from driver’s POV (blue)
 - Calculate distances

Further Analysis:
- Time to Collision (TTC)
 - Roadway is 25mph

<table>
<thead>
<tr>
<th>Distance to</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Visible Full-Car</td>
<td>166 meters</td>
</tr>
<tr>
<td>Last Visible Partial-Car</td>
<td>184 meters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TTC to</th>
<th>Along Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Visible Full-Car</td>
<td>15 seconds</td>
</tr>
<tr>
<td>Last Visible Partial-Car</td>
<td>16.6 seconds</td>
</tr>
</tbody>
</table>
Conclusions

➢ LiDAR is a valuable tool for evaluating line of sight

➢ Though setup is time-intensive, able to be used as an automated process

➢ More objective and efficient than video reduction or survey methods

➢ Topic areas:
 ◦ Roadway design
 ◦ Vehicle design
 ◦ How emerging technologies can overcome visibility issues
 ◦ V2V
 ◦ Autonomous
 ◦ Etc.
Questions?

Leslie C. Harwood
Project Associate
Center for Advanced Automotive Research, VTTI
lharwood@vti.vt.edu

Dr. Zachary R. Doerzaph
Director
Center for Advanced Automotive Research, VTTI
zdoerzaph@vti.vt.edu