Automated Drive Analysis of Naturalistic Driving Studies with Looking-out Video

Pujitha Gunaratne¹, Sujitha Martin², Eshed Ohn-Bar², Ravi Satzoda², Mohan Trivedi²

¹Toyota Collaborative Safety Research Center

²Computer Vision and Robotics Research Laboratory University of California, San Diego

Computer Vision and Robotics Research Laboratory

Ultimate Goal

Develop computer vision algorithms and machine learning techniques to automate the analysis of NDS data to understand driver behaviors and situational awareness for intelligent vehicle applications.

Approach

- Configurable vehicle testbed to replicate NDS platforms
- Algorithm development on multi-perspective views
- Testing and validation on large scale NDS datasets

Instrumented Vehicle Testbed

ΤΟΥΟΤΑ

Simulated SHRP2 Views

+ SHRP2 identical vehicle sensors

Face view

Hands view (MY125M)

Forward view

SHRP2 Compatible Combined view

Drive Analysis on NDS Data

- Introduction: Hierarchical view of Drive Analysis
- Lane analysis for data reduction
- Lane detection LASeR
- Lane drift analysis
- Lane position detection evaluation
- Drive Analysis
- Future Work

Hierarchical view of Drive Analysis

Lane Analysis

- Extraction of lane drift related events from naturalistic driving data
- Data reduction events in "Researcher Dictionary for Video Reduction Data" (ver2.1, Dec.3, 2010)
 - Moving straight with constant velocity
 - Moving straight with acceleration

acceleration

- Drifting right
- Drifting left

COllaborative Safety Research Center

constant velocity

Lane Drift Analysis

Lane Detection

Lane Detection: LASeR

LASeR-Lane Analysis using Selective Regions

Sample Results: Lane Detection

Lane Drift Analysis

- Drift regions are defined where lane markings would be perceive to drift during a vehicle drift
- Positions of lane markings are determined → if found in the drift regions, lane drift is detected

Sample Drift Analysis on TRB SHRP2 Video Data

Constant right drift

Left drift in Passing a truck

Lane Detection Evaluation: Lane Position Deviation (LPD)

Determines accuracy of lane position in the front view of the ego-vehicle

$$\delta_{LPD} = \frac{1}{y_{max} - y_{min}} \sum_{i=y_{min}}^{y_{max}} \delta_i$$

Mean LPD was less than 8cm.

h_B	Dataset	$N_B = 16$		$N_B = 8$	
		μ_{LPD}	σ_{LPD}	μ_{LPD}	σ_{LPD}
10	LISA S_1	5.33	4.53	6.05	4.53
	LISA S_2	8.09	3.54	8.38	3.51
	LISA S_3	7.12	3.81	9.73	5.12
	LISA S ₄	7.30	3.59	7.83	3.71
	LISA S ₅	5.71	3.69	5.7	3.19
5	LISA S ₁	5.01	3.36	5.38	3.72
	LISA S_2	7.11	3.33	6.36	2.80
	LISA S_3	6.11	3.62	9.14	5.28
	LISA S ₄	7.72	3.77	7.35	4.01
	LISA S ₅	6.18	5.08	7.51	5

Drift Analysis Evaluation

- □ Validated on SHRP2 sample data and TTC experiment data.
- Drift is estimated when vehicle moves > 50cm from the center of the lane
- Detected with more than 90% accuracy (on SHRP2 sample data)

Drive Analysis Report

After analyzing the entire drive, a drive analysis report is generated

Looking-out Drive Analysis

Laboratory for Intelligent and Safe Automobiles (LISA), UCSD

Toyota Collaborative Safety Research Center (CSRC)

Conclusions & Future Work

- U We presented a preliminary work on lane drift analysis for NDS data.
- Evaluation on sample SHRP2 datasets, LISA and TTC datasets (similar to SHRP2 perspectives) shows high accuracy rates.
- Currently work is going on to characterize lane drifts further based on surroundings of the ego-vehicle.

Contributions

- R. K. Satzoda and M. M. Trivedi, "Drive Analysis using Vehicle Dynamics and Visual Lane Semantics", IEEE Trans. On Intelligent Transportation Systems, Aug. 2014.
- Ravi Kumar Satzoda and Mohan M. Trivedi, "Selective Salient Feature Based Lane Analysis," 16th IEEE Intelligent Transportation Systems Conference, (ITSC2013), Oct. 2013.
- Ravi Kumar Satzoda and Mohan M. Trivedi, "Vision-based Lane Analysis: Exploration of Issues and Approaches for Embedded Realization," Advances in Embedded Computer Vision, Springer, 2014.
- R. K. Satzoda, P. Gunaratne, M. Trivedi, "Drive Analysis using Lane Semantics for Data Reduction in NDS", IV 2014.
- Ravi Kumar Satzoda and Mohan M. Trivedi, "On Performance Evaluation Metrics for Lane Estimation," International Conference on Pattern Recognition (ICPR2014), August 2014.
- R. K. Satzoda, P. Gunaratne, M. Trivedi, "Drive Analysis using Lane Semantics for Data Reduction in NDS", IV 2014.
- R. K. Satzoda, Sujitha M., Minh Van Ly, Pujitha G. and Mohan M. Trivedi, "Towards Automated Drive Analysis: A Multimodal Synergistic Approach", 2013 IEEE Annual Conference on Intelligent Transportation Systems, pp. 1912-1916, Oct. 2013.

Contacts

Pujitha Gunaratne Toyota Collaborative Safety Research Center pujitha.gunartne@tema.toyota.com 734-995-3464

Ravi Satzoda University of California San Diego <u>rsatzoda@eng.ucsd.edu</u> 858-361-3746

Mohan Trivedi University of California San Diego <u>mtrivedi@soe.ucsd.edu</u> 858-822-0075

Thank You!

