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Scientific Questions

@ How does risky driving behavior measured by g-force events
vary by condition and over time?

@ Do composite g-force events change over time?

@ Do trip-specific covariates (e.g. adult passengers, night
driving, etc.) effect g-force events?

@ What are the sources of variation in g-force events?

@ What is the serial dependence in g-force events?

@ How do g-force events relate to teenage accidents?

@ Can we predict actual or near crashes from g-force events?
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@ Exploring features of the data

@ Random process and marginal modeling of LONGitudinal
counts:

@ A hierarchical Poisson regression modeling approach (Kim,
Chen, Zhang, Simons-Morton, Albert, 2013 JASA )

@ Marginal analysis of longitudinal counts data in long
sequences (Zhang, Albert, Simons-Morton, 2012 AOAS)

@ Joint models of kinematic measurements and crashes for
prediction

@ Ordinal latent variable models and their application in the
study of newly licensed teenage drivers (Jackson, Albert,
Zhang, Simons-Morton, 2013 JRSS-C)

@ A two-state mixed hidden Markov model for risky teenage
driving behavior (Jackson, Albert, Zhang, In press at
AOAS).

@ Discussion
@ interesting problems?
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Exploring the Data

Composite kinematic measure per mile

Time since licensure (month)

Individually Smoothed Curves
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Exploring the Data (Continued)
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Exploring the Data (Continued)
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Lowess smoothed empirical variograms for the composite kinematic events based on
10 random pairings with each observation in the dataset randomly paired with another
on the same individual.
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A Hierarchical Model

We assume the hierarchical Poisson regression models as
follow:

yjj ~ Poisson {mij exp (g(tij) + xi’jﬂ + 7+ i + eij)}

where
@ g(t;) is a polynomial regression spline of order p with k knots.
@ 7 ~ N(0,0;?): arandom effect for subject
@ i ~ N(O,aﬁz): a random effect for overdispersion
o

ei ~ N (0,072 (1 — p*)) with p = exp(—0) and djj = [tj — tij_1|: @
random effect with serial correlation among trips
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Posterior Estimates Under the Full Model

Posterior  Posterior 95% HPD
Variable Mean sD Interval
passenger -0.181 0.006 (-0.194, -0.168)
day /night -0.193 0.006 (-0.204, -0.182)
risky friend | 0.406 0.168
(
(

(0.072, 0.729)
o+ 0.287 070 (0165, 0.423)
o2 0.269 003 (0.263, 0.275)
0:;2 0125 0006  (0.113,0.137)
0 36.824 3700 (29.834, 44.260)
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Estimated Log-longitudinal Trajectory
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Serial Correlation (Model Based)
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The Association of G-force Events with Crashes

Kinematic measures and their correlation with C/NCs

Category gforce  Frequency % toialevents  Correlation with
CNCOst
Rapid starts = 0,35 8747 304 0.28
Hard stops £-043 4228 19.1 0.76
Hard left turns £ -0.05 4563 204 0.53
Hard right turns 2 0.03 3185 14.4 0.62
Yaw fi® in 3 1367 6.2 046
Tatal 22090 (L] .60

tComalation computed between the CNCO and elevated g-force events based on

monthly rates,
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Risk Prediction

GEE With Logistic Regression
Prediction of C/NC by Period

~
s First 6-months
© /
S /
o Third 6-months
o °7
=
s} =
ot S
S
2 - Second 6-months
3 S
©
=
S o
5 S /
= P
o
24
T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Composite Event Rate

Simons-Morton et al., American Journal of Epidemiology, 2012
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Joint Model for C/NC and Kinematics: A
Hidden Markov Modeling Approach

Latent Markov chain:
8
C/NC: Poisson with Klnema.tlc s:ompos_lt:
mean g(5) events: Poisson wit!
mean h(8)
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Hidden Markov Model:Prediction
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Figure 2: Predicted value of the hidden state given the observed data for three drivers. The (o) indicates
the probability of being in state 1 (poor driving),(+) indicates a crash/near crash event and the dotted line

indicates the composite kinematic measure.
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Hidden Markov Model:Prediction

Trus posisne rsts

Figure 1: ROC curve for the mixed hidden Markov model based one ‘one-step ahead’ predictions (area under

the curve = 0.74).
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@ Exciting opportunities for collaborative work with research
statistical scientists
@ Understanding variation in kinematic measurements

@ Developing dynamic predictors of crashes

@ Future research
o Identify subgroups of teenagers that are at extreme risk:
Tree-based approaches

@ Understanding effect of a C/NC on subsequent kinematic
dynamics: Recurrent events

@ Cost-effective and efficient designs for large scale studies
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