Driver Assist System Considerations

First Human Factors Symposium: Naturalistic Driving Methods & Analyses
August 27, 2008

Tomohiro Yamamura
IT and ITS Engineering Department
Nissan Motor Co., Ltd.
Overview

1. Nissan’s Safety Shield and Driver Assist Systems
 - Distance Control Assist
 - Lane Departure Prevention

2. Naturalistic driving study for development of DAS

3. Examples of studies
 - Risk Quantification
 - Lane Departure
Safety Shield Concept

“The Vehicle That Helps Protect People”

The vehicle activates various barriers to help the driver, passengers and other road users to avoid danger from normal driving conditions through post accident conditions.
Safety Shield

“The Vehicle That Helps Protect People”

Risk has not yet appeared

e.g.: Adaptive Front Lighting System (AFS)

Risk has appeared

e.g.: Lane Departure Prevention (LDP)

Crash may occur

e.g.: Vehicle Dynamics Control (ESP)

Crash is unavoidable

e.g.: Intelligent Brake Assist

Pre-Crash Seatbelt

Crash/Post-crash

e.g.: Zone body structure
Distance Control Assist

- Support the driver to help maintain appropriate distance by moving gas pedal upwards to assist to switch to the brake
- Applied on FUGA in Japan, and on FX in US in June/08

Detect by laser sensor

Move gas-pedal and apply brakes
Lane Departure Prevention

- Detect unintentional lane departure and helps to return to lane by generating yaw moment
- Applied on INFINITI M, EX35, FX in June/08

Detection by camera

Assist return to lane with yaw moment by brake control
System Effectiveness

DCA (Distance Control Assist)

Less frequency in closer approach

Lateral acceleration

Normal driving zone

Vehicle maneuver

LDP (Lane Departure Prevention)

Smooth maneuver to return inside
NDS for development of DAS

- Necessary to understand ‘driving behaviors’ in the real world to develop Driver Assist Systems

- Data from Naturalistic Driving Study are very useful
 - large volume
 - includes both of normal and unsafe driving data

- Typical usages of NDS are:
 1. quantitative analyses of driving behaviors
 2. driving behaviors in risky situations
 3. direct use of data for system function simulations
 4. system FOT
Examples of studies: Approach

- Using 100-Car naturalistic driving study data

Risk quantification
- tried to quantify frequencies of various Time-to-collisions in car-following

Lane departure
- tried to understand how drivers return to the lane in the case of lane departure
Risk Quantification : Analysis

- **Processes of data reduction**

 - Vehicles used more than 90% by the main drivers: 16 subjects
 Younger group (18 – 24 years old): 11 subjects
 Older group (56 – 68 years old): 5 subjects

 - Automatically selected the scenes can be assumed as car-following

 - Calibrated the frequencies of the scenes by video inspection
Risk Quantification: Results

Driving time frequency in each TTC bin

- Younger group stays more frequent than older group in all bins.

- More frequent in longer TTC bin
- Younger group stay more frequent than older in all bins
Risk Quantification: Results

Driving time frequency in each TTC bin

- Larger difference at 5 – 10 s of TTC

- Time less than 5s is 1/7 of less than 10s

- Difference in times less than 5s is relatively small

- Larger difference at 5-10s of TTC

Driving time cumulative frequency
Risk Quantification: Results

Frequency of the scene in each TTC

- Younger group experiences more frequent than older group in all bins.

- Almost constant in 5-10s TTC
- Less frequent in smaller TTC less than 5s
- More frequent for younger group than older group in all bins

Frequency of the scene in each TTC bin
Risk Quantification: Results

Frequency of the scene in each TTC

- Frequencies of older group are less than younger group by about 30%.

- Scenes less than 5s are 1/3 of 10s.

- Frequencies of older group are about 70% of younger group.

Cumulative frequency of the scene
Lane Departure : Analysis

- Analyzed 26 cases from 71 crash / near crash cases by video analysis

Example: Lane departure at freeway in 55mph, tried to insert CD disk to audio
Summary

- It is necessary to understand ‘driving behaviors’ in the real world to develop Driver Assist Systems. Then, data from Naturalistic Driving Study are very useful.

- Typical usages of NDS are;

 1. quantitative analyses of driving behaviors
 Example: Risk Quantification Study
 2. driving behaviors in risky situations
 Example: Lane Departure Study
 3. direct use of data for system function simulations
 4. system FOT
Thank you for your attention