Motorcycle Rider Naturalistic Driving Study

Feasibility Study of Instrumentation to Collect Behavior Data to Identify On-Road Rider Behaviors

Zac Doerzaph
Last year (2007), one in eight motor vehicle fatalities were attributed to motorcycles.

Motorcyclist fatalities have been increasing for 10 consecutive years:
- In 1997 fatalities from motorcycle crashes were at a low of 2,116.
- In 2007 deaths from motorcycle crashes have risen to 5,154 (128% increase).

During the same 10 year period, deaths from motorcycle crashes rose from 5% to 13% of the national surface transportation fatality problem.
Background

Deaths in Vehicle Accidents Have Declined ...

- Fatalities in motor vehicle accidents
 - 50 thousand
 - 40 thousand
 - 30 thousand
 - 20 thousand
 - 10 thousand
 - 0 thousand

- Deaths per 100 million vehicle miles traveled
 - 2.5
 - 2.0
 - 1.5
 - 1.0
 - 0.5
 - 0.0

- Number of motorcycle riders killed
 - 5 thousand
 - 4 thousand
 - 3 thousand
 - 2 thousand
 - 1 thousand
 - 0 thousand

- As a percentage of all vehicle fatalities
 - 15%
 - 12%
 - 9%
 - 6%
 - 3%
 - 0%

... But Motorcycle Deaths Continue to Go Up

Source: National Highway Transportation Safety Administration

2016 NEW YORK TIMES
Background

• Data suggests this trend will continue
 – Motorcycle registration in 2007 up 75% from 1997
 – Increasing fuel costs motivate motorcycle use
 • Many motorcycles achieve 50+ mpg

• Some casual factors appear to include
 – Impairment
 • In fatal crashes, riders are 2.5 times more likely to be intoxicated than car drivers
 – Inexperience
 • In fatal crashes, riders are 3 times more likely not to have a proper license than car drivers
 – Age
 • Many riders are middle-age and older drivers who rode when they were young and they “think they have the same reflexes” – James Port
 • Fragility of older riders
Limitations of Current Research

- Some of the best data we have is nearly 30 years old
 - “The Hurt Report”, published in 1981 is a primary reference for motorcycle crash data
- Most research is based on crash databases (police reports)
 - Studies such as 100-car have demonstrated inaccuracies self-reported pre-crash information
- Little is known about the factors prior to motorcycle crashes
 - What is the differences in rider behavior and exposure of those involved in crashes vs. those who are not involved
 - What was the rider doing prior to the crash/near-crash
 - What environmental factors differentiate crashes/near crashes from baseline driving
 - How common are secondary tasks while riding
 - What opportunities are there for crash mitigation (collision avoidance warnings, abs, regulations, etc)
Project Overview

• Phase I: Determine the feasibility of instrumentation (18 months)
 – Determine data acquisition system (DAS) requirements
 – Design and construct the DAS
 – Test and validate DAS (3 to 5 motorcycles)
 – Develop Phase II experiment
 – Recommend analyses for Phase III

• Phase II: Execute Naturalistic Study
 – Execution depends on the Phase I outcome
 – Instrument Personal motorcycle
 – Preliminary study size ~50-60 participants

• Phase III: Analyze Naturalistic Study Results
 – Design TBD based on Phase I and II outcomes

* Funding provided by NHTSA and NSTSCE
Phase I: Major Research Goals

- Determine if the technology exists to instrument motorcycles
 - Can we capture the data necessary to answer Phase II preliminary questions

- Demonstrate the feasibility of using the technology on motorcycles for naturalistic data collection
 - Will be verified by an independent evaluator
Phase I Instrumentation Challenge

• Design and develop a DAS that
 – Fits unobtrusively in a motorcycle
 • Powerful
 • Small
 • Light weight
 • Weather proof
 – Is capable of providing the required data, for example:
 • Video of driving scene
 • Location (GPS, lane position, etc)
 • Dynamic state (velocity, acceleration, pitch, yaw, roll, etc)
 • Rider input (brake, throttle, fork rotation, etc)
Phase I Instrumentation Challenge (cont)

- Need to consider:
 - Effects of leaning in corner
 - Accelerometer orientation
 - Gyroscope orientation
 - GPS orientation
 - Radar orientation
 - Motorcycle capabilities
 - Higher acceleration
 - Rapid changes in roll angle
 - Wheelies
- Other sensor challenges
 - Capturing rider eye/face video
 - Fork rotation considering angle
 - Capturing rider hand position
 - Brake (front/rear bias)
 - Throttle

Figure Source: Hima, Nehaoua, Arioui, (2007)

Figure Source: Cossalter, Lot (2002)
Phase I: Preliminary Instrumentation

- VTTI is presently developing a DAS that is the likely candidate for motorcycles
 - Slightly larger than a deck of cards
 - Can process two channels of video
 - Expandable through CAN network
 - Accelerometer and gyro
 - Machine vision
 - WiFi
Phase I: Prove DAS Feasibility

• Test-track data collection
 – 3-5 motorcycle types
 – Naive participants
 – Prescribed set of typical maneuvers
 – Analyze results and improve the DAS

• On-road data collection
 – Use improved DAS from test-track results
 – 3-5 participants using their personal cycles
 – Two to four weeks per participant
 – Use expected Phase II methods
 – Analyze results and improve DAS
 – Recommend the final DAS for Phase II
Phase II Example Research Questions

• What are the riding behavior differences between drivers who have crash and near-crash events vs. those who do not
• What are riders attending to when they have conflicts, near crashes, and crashes?
• How is exposure related to crash and near crash involvement
• Under what environmental conditions do near crashes and crashed tend to occur
• How does lane placement effect crash and near-crash involvement
• How often do other vehicles appear to fail to see motorcycle?
Motorcycle-Like Vehicles
Opening the Market to Additional Drivers
References

