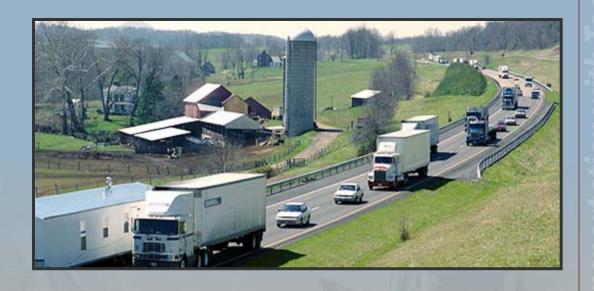
The Importance of Video Inspection in Naturalistic Driving Studies


Myra Blanco Gregory M. Fitch

Safety & Human Factors Engineering
Center for Truck & Bus Safety

First Human Factors Symposium:
Naturalistic Driving Methods & Analyses
August 26th, 2008

Overview

- Background
- Examples
- Discussion
- Conclusion

Background

- Heavy Vehicle NDS datasets
 - Data from over 200 drivers
 - ~ 3M miles of driving data
 - ~ 20 TB of data from video and dynamic sensor files
- Algorithms/models used to
 - Identify potential events
 - Remove non-threatening events

Considerations

- Algorithms are not always reliable
 - Benign targets can appear threatening when video data not referenced
- Need video data to evaluate performance of algorithms and models
- Why video is important?
 - Identifying sensor artifacts
 - Validating model\data mining
 - Detection of unanticipated cases

Examples

- Sensor artifacts
 - Toll booth
 - Overhead sign
 - Adjacent vehicle
 - Bridge
- Validation
 - Intentional short TTC
 - Intentional high lateral acceleration
- Unanticipated cases
 - Deer hit

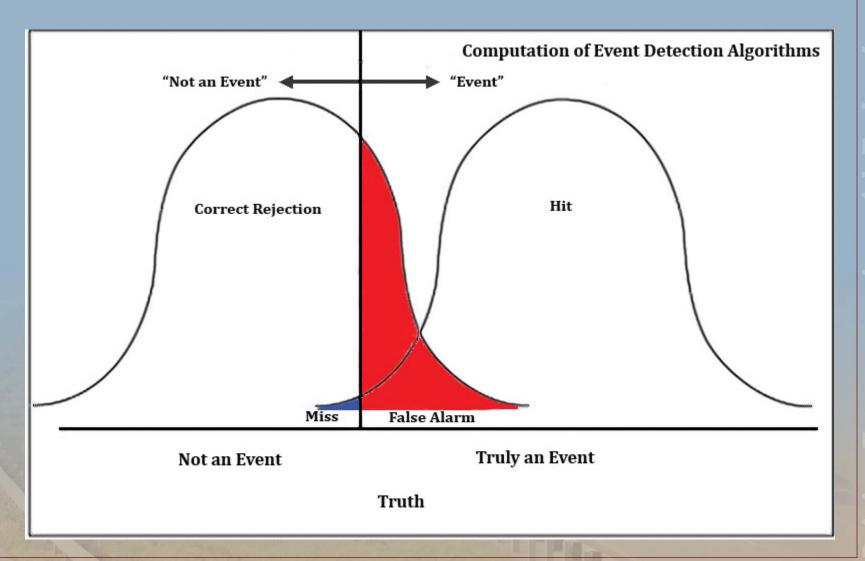
Removing Non-Threatening Events

- Remove events in which:
 - Tracked target was oncoming
 - Tracked target was in the same lane as the FV for less than 4 s
 - Tracked target accelerated
 - FV decelerated before a tracked target appeared
 - Tracked target was outside of the FV's lane and the FV did not make a lane change
- However, valid events can be omitted as a result of additional criteria

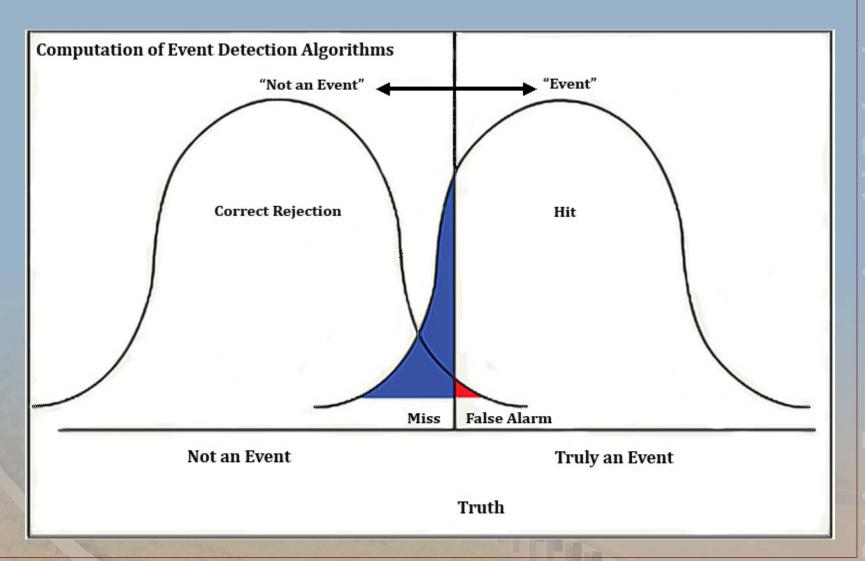
Why Video Inspection?

Parametric Data Only

1,030 RE Conflicts 7 RE Conflicts All CRC Parametric Data + Video Inspection


596 RE Conflicts

- 1 Crash
- 26 Near-Crashes
- 569 Crash Relevant Conflicts (CRC)


- Algorithms that draw the line between crash threat and false alarm will either
 - Fail to detect crash threats

 Falsely assess targets as a crash threat

Selection Criteria Tradeoff

Selection Criteria Tradeoff

- Selection criteria depending on objective
- Cast a wide net, use liberal selection criteria to find potential events
- Inspect each identified event with video data to assess severity
 - Crash
 - Near Crash
 - Crash Relevant Conflict
- Inter\Intra rater reliability performed

- Other reasons to perform video inspection include:
 - Sensor Reliability
 - Sensors do not always accurately measure reality
 - Sensors can fail
 - Driver Behavior
 - Distraction
 - Drowsiness
 - Aggression

- Data mining or model development requires video inspection to check model/assumptions
- Video data allows models developed to answer current and future research questions to be validated

Conclusion

 "Blind" algorithms\event selection criteria could either miss critical events or falsely assess targets as a crash threat

 Valid data required to draw valid conclusions from NDS data

 Video inspection provides a way to obtain valid data

Questions

