

Driver Usage Patterns for Secondary Information Systems

By: Linda S. Angell Crash Avoidance System Development General Motors, Safety Integration & Miguel Perez and Jon Hankey Virginia Tech Transportation Institute

At:

The First Human Factors Symposium on Naturalistic Driving Methods & Analyses Virginia Tech Transportation Institute August 27, 2008

Research Program

Research Team

VTTI Team

- Miguel Perez, Principal Investigator
- Jon Hankey, Principal Investigator
- GM Team
 - Rich Deering, Linda Angell, Brian Repa, Andy Gellatly, Lee Zhang

Performed in two phases

Done over 3 years

Study Objectives

- Collect continuous driving data with emphasis on extracting and analyzing infotainment system interactions
- Reduce the totality of the data, marking when system interactions and use of cell phone occur
 - Follow up with detailed reductions describing the goal and duration of each button press
- Examine patterns and frequencies of system use, skill acquisition processes, presence and extent of self-regulation, and eye glance patterns during system use

Application Opportunities

- Frequency-of-use patterns (available for use in planning functionality of future systems, as well as for use in selecting/laying-out controls and displays)
 - Including a clarification of whether frequency-of-use is unique to specific user interface implementations (vs. driven more generally by user goals)
- Initial data on the extent to which skill and strategies of use change as drivers become familiar with a unit through their interactions with it over time (for potential use in determining degrees of flexibility/adaptability needed in user interfaces)
- Identification of usage cases that pose difficulty and/or offer opportunities for improvement through innovations of user interface design or function

Study Scope

- Two vehicles were used
- Each was equipped with a different aftermarket infotainment system
- The functionality of these aftermarket systems was comparable to current infotainment products in the market

System X

System Y

Vehicle 1

2002 Cadillac STS with the System X device
AM/FM
CD/DVD/MP3 player
Sirius receiver (satellite)
iPod interface (iPod provided)
Steering wheel controls for volume and fader

Vehicle 2

2005 Ford Crown Victoria with the
 System Y device
 AM/FM

- CD/DVD/MP3 player; JPG reader
- Sirius receiver (satellite)
- iPod interface (iPod provided)
- Navigation System (some functions locked out)

Participants

- A total of 17 participants, ages 27 to 57
- Participants had to indicate that they spent more than 5 hrs/week in their vehicle
- Participants were tech-savvy, but new to these particular systems
- Participants received no monetary compensation

	Female	Male
System X	N=5 (M=42.8 years)	N=4 (M=41.5 years)
System Y	N=4 (M=39.8 years)	N=4 (M=44.25 years)

Tech-Savvy

- Participants were intentionally recruited to have some larger than average level of tech-savvy, especially related to music listening
- Percentage time spent listening to audio system:
 - Participant estimate: 89.1% (SD=18.7)
 - Observed was significantly higher: 99.3% (SD=0.8)
 - Stutts et al. (2003) estimate was lower at 72.6%
- Participants spent, on average, 2.43% of their time in the vehicle manipulating the system controls (SD=1.77)
 - The Stutts et al. (2003) estimate is somewhat lower at 1.1%
 - Neurauter (2006; Radio Usage) estimate using 100-Car data was 1.4%
- Participants owned an average of 312 CDs (SD=599) and 438 compressed audio files (SD-1288)

General Protocol

- Participants were brought to VTTI to fill out background questionnaires, informed consent, and information sheets to assist data download
- Each participant used the assigned car during their daily routine for ~4 weeks
- Weekly data downloads, with little or no driver awareness
- Participants did not receive any instruction on the system, and were given the equipment needed for transferring music to the iPod that was installed in their vehicle
 - Information about the specific purpose of the study was not provided

Data Reduction

Analysts watched all the video collected, and coded:

- Operations with the system by drivers
 - Function accessed
 - Control actuation (and duration of actuation)
 - Goal

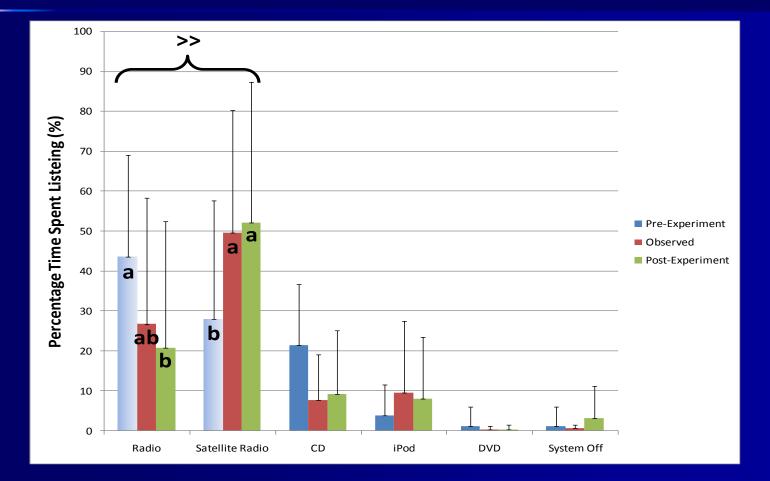
Eye glance behavior (for a subset of system operations)

Data Reduction

Use of each system by drivers was coded into:

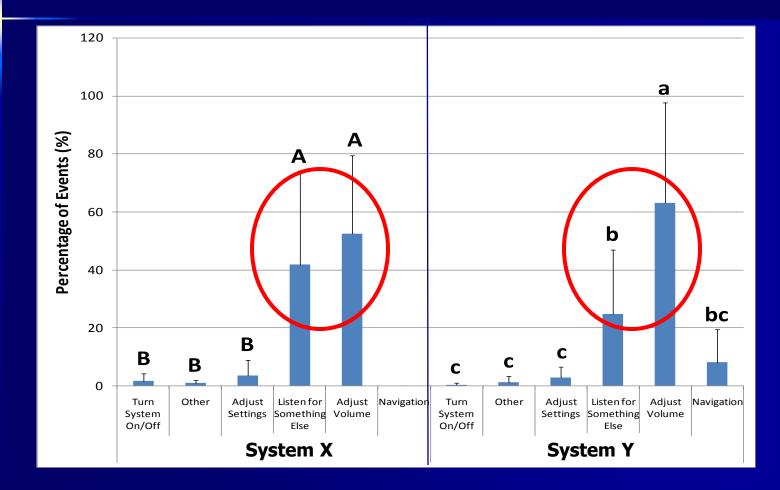
- <u>Interactions</u>: system manipulation, starts on first action (e.g., button push), ends when simple goal is completed (e.g. change station)
- <u>Events</u>: succession of interactions with a common goal (e.g. find something to listen to)
 - Events comprised of one or more interactions; a series of operations

Dataset Properties

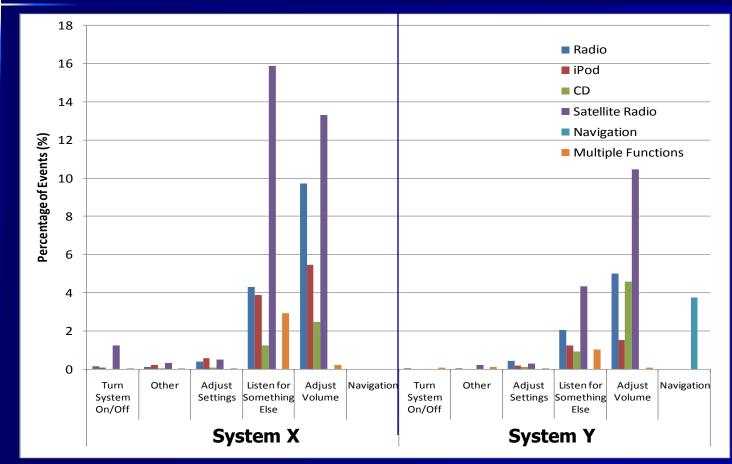

Dataset included:
 - 694 hours of driving
 - 30,371 vehicle-miles
 - 11,297 interactions
 - 6,675 events

Results

Natural Patterns of Listening

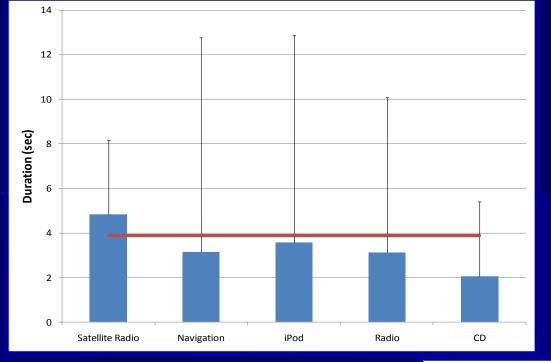

There weren't large differences between infotainment systems in patterns of use

 Differences in usage patterns were mainly due to <u>the user's goal</u> (e.g., adjusting volume vs. listening for something else) <u>rather than</u> to infotainment system (even though the two systems implemented functions in different ways)


 Naturalistic data revealed frequency-of-use data to be fairly robust across different interfaces (for "goal-level" behavior)

Distribution of "Events"

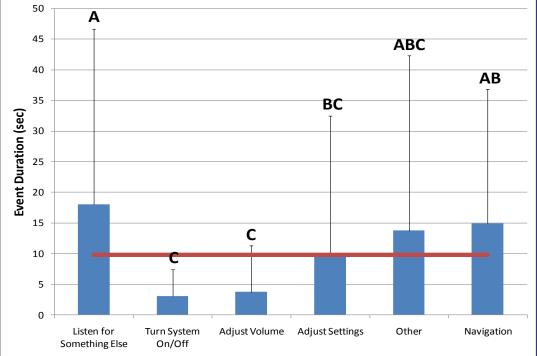
("goal-based" percentages for Clarion & Pioneer yielded similar rank orders)

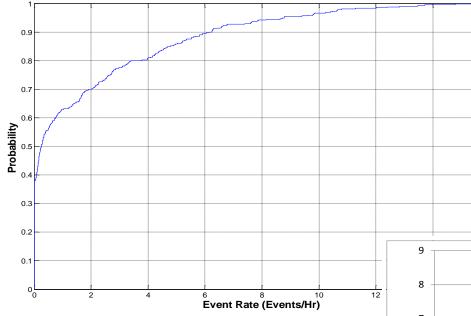

Event Distribution [Within each goal, Events Broken Down Into Function Used]

Naturalistic patterns for "typical" interactions differ from those that are "rare but risky"

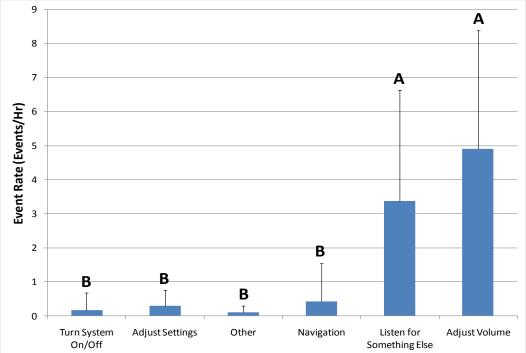
 "Typical" interactions tended to be short, reasonable, frequent

 "Typical" interactions offer insights for improving usability




Durations of Single Interactions 90% were <10 sec

75% were < 3 sec


Durations of "Events" (multiple operations)

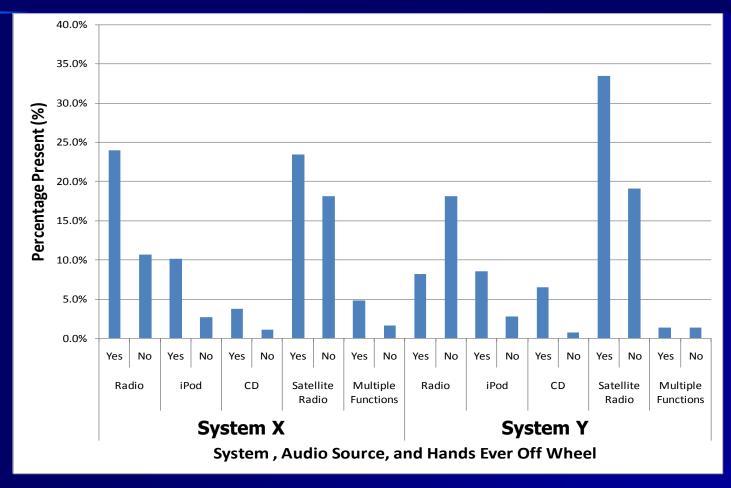
90% <24.6 sec 65%< 5 sec

Events typically occurred less than 5 times/hour, even for the most frequent.

Also, though not shown here, individual control interactions typically occurred at rates of less than 10 per hour.

Long interactions are a contrast: They were infrequent, more rare

Long interactions were infrequent, more rare


- Such interactions were associated with longer streams of both visual and manual interactions with the devices-- and/or may have been initiated or continued at inopportune times
- <u>Both</u> types of interactions/events (both the typical and the rare) are important for evaluating eyes-off-road-time and crash risk
 - However, to evaluate crash risk ALSO requires extracting frequency-of-use and conditions-of-use data in a **formal** way
 - For this, a SEPARATE project is underway within VTTI's Surface Transportation Safety Center of Excellence

Multitasking and hands-off-wheel behavior

- Many interactions are assigned to the "hands" in some systems
- Devices which customers carry-in to the vehicle and other tasks (such as eating, drinking, grooming) also involve the hands
- Instances of multi-tasking where many demands were placed on the hands were analyzed to examine "hands-off-wheel" behavior
- Caution should be exercised in interpreting results
- However, findings suggest there may be opportunities for "planning-ahead" for extra customer use of hands for tasks other than secondary-device use (e.g., considering alternate input-modalities for devices, where possible)

Distribution of Hands Off Wheel Instances

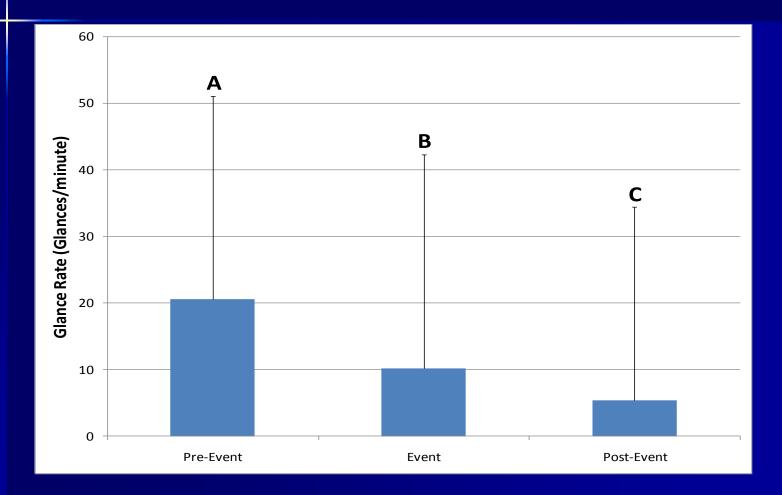
(Based on use cases involving <u>cell phone</u> and in-vehicle device)

Naturalistic patterns revealed different kinds of interaction (different from that which is often tested based on task analyses)

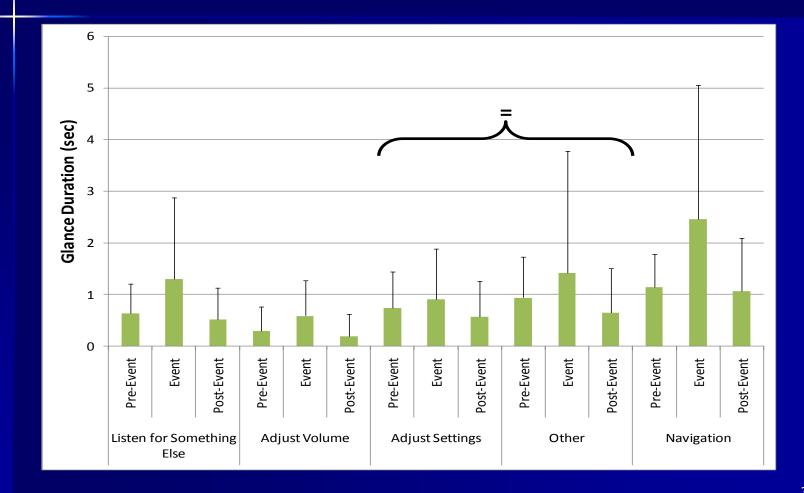
- Natural task behavior on secondary systems sometimes has a more "random-walk" quality to it than task analyses typically capture
- Natural goals can be related to satisfying a personal need ("I'm searching for a song that matches <u>my</u> tastes")
- And may result in "hunting" or "searching" and/or "wandering/exploring" behavior until the need is met -- or the goal abandoned
- Many task analytic methods do not capture this type of exploring/searching behavior to satisfy a uniquely personal need . . . so naturalistic data suggest that techniques for identifying use cases and modeling them may benefit from updates and enhancements

Naturalistic patterns reveal "explore" vs. "use" driver behaviors/strategies

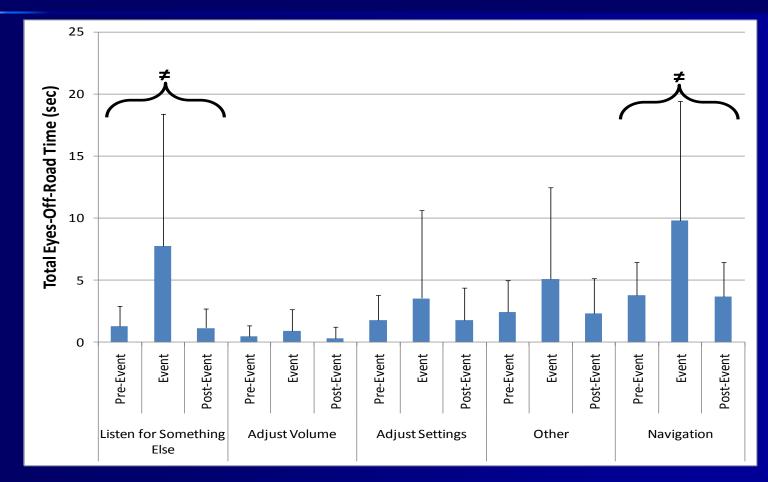
Glance Behavior


Revealed the importance of pre- and post- event periods of glancing

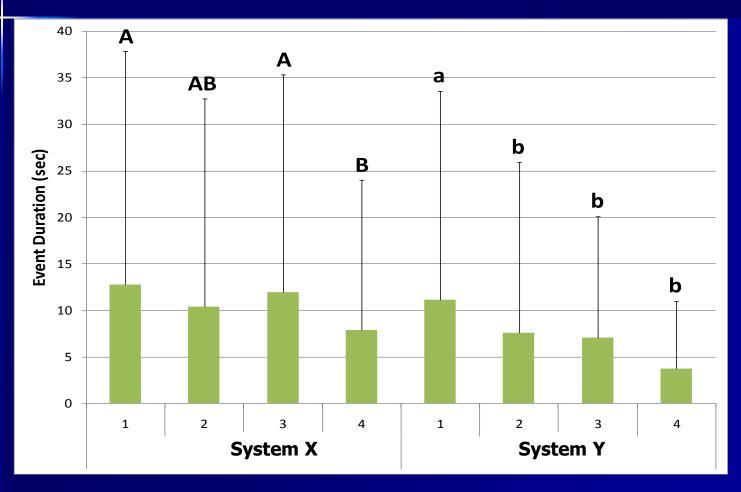
- These are often only partially captured by standard methods of task evaluation (usually glances are scored from task command to last control input)
- Yet <u>both</u> "before" and "after" periods can be very informative indicators of


Usability

Eyes-Off-Road Time & Crash Risk

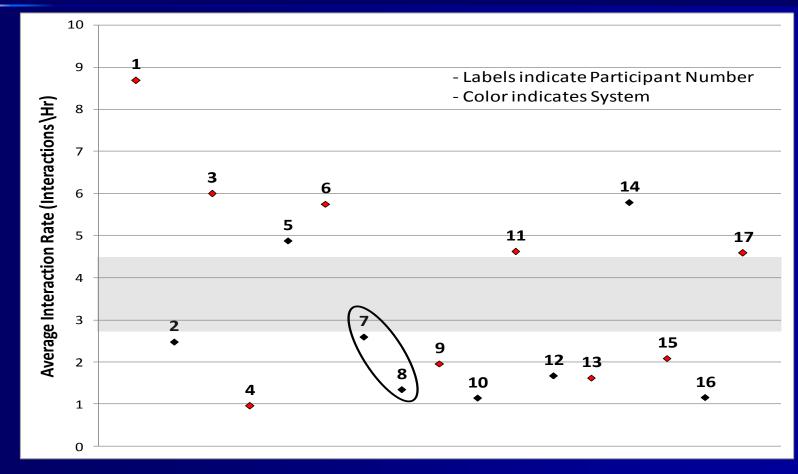

Glance Rate – Events

Glance Duration – Events


Total Eyes-Off-Road-Time: Events By Goal

Skill Acquisition: Most usage patterns were remarkably robust over time

- There was less change as a function of time with device than expected
- There was some initial novelty effect that declined somewhat over the 4 weeks
- However, at the level of goal-oriented behaviors, rates of usage changed very little over time
- Some skill with each system was acquired over time


Event Duration Shortened As Skill Was Acquired Over Weeks

Different types of users

Low usage
High usage
Are there also "risky" and "conservative" sub-types of users?

Clustering of Interaction Rates: Two Groups of Users

Conclusions

- Naturalistic data is rich with information that can be applied during development of new vehicle systems and capabilities
 - New information & entertainment systems
 - New driver assistance systems
 - Introduction of autonomous capabilities to the driver-vehicle system
- As more new technologies enter the automobile, the opportunities for applying naturalistic data on driver usage patterns will continue to expand

Thanks!

linda.s.angell@gm.com miperez@vtti.vt.edu

