Data Mining in Naturalistic Driving

Shane McLaughlin, PhD

Center for Automotive Safety Research

Example Research Goal

Are there differences in driver following behavior in urban areas during clear weather versus severe rain?

Selection and Addition

- **Acquiring Samples**
- Understanding the data
- Explore

Precipitation

- **Evaluate quality**
- Select interesting subsets
- Plan integration of datasets
- Selecting fields/attributes
- Sampling design

Speed

Data Preparation

- Organizing
 - Accumulating files
 - Domain specific applications
 - Connections to large datasets
 - Definitions, units, sign, coding
- Storage/processing strategy
 - RAM vs reduced for later
 - Flat table, mixed format, relational
 - Read/write speeds, subsequent analysis
- Transforming
 - Format, creating composite variables, separating
- Cleaning
 - Missing values, noise, outliers, incorrect values
- Prepare data set from raw for use in all subsequent stages

Naturalistic Data Mining (DM)

- Three DM Algorithm Components
- Event Parsing Component
- Crunching

DM Algorithm Components

- 1. Stream processing
 - Numerical methods
 - Filters
 - Splines
 - FFTs
- 2. Event parsing
 - Triggers boolean logic, thresholds and combinations
 - Algorithms
 - Custom scenario recognition code
 - Kinematic models
 - Neural Nets
 - Machine vision
- 3. Descriptive Data Capture IVs and DVs
 - Within event counts, summaries etc (steering reversals)
 - Aggregation, trends descriptive statistics (max, mean, dominant frequencies)
 - Classification (lead vehicle braking, intersection turn)
 - References used for subsequent stages (Target ID, road segment)
 - Temporal landmarks within data (sync of max brake, sync of glance up)

Pitfalls

- Not familiarizing with domain and details of data
 - Faulty from start
 - Imbedding assumptions early too narrow
- Starting analysis before the data is clean
 - If detected, rework
 - If not detected, faulty conclusions
 - Data versioning difficulty
- Not designing a DM sampling strategy and monitoring successes.
 - Sampling bias
 - Incorrect exposure estimates
 - Insufficient data
- Evaluating on the same data used for developing a model
 - Optimistic estimates of performance

Hidden Bias

Hidden Bias

Stratified Evaluation Approach

Bias present in proportion of valid events across variable of interest

Hidden Bias

References and Links

- Larose, D. T. (2005). Discovering knowledge in data: an introduction to data mining. John Wiley & Sons. Hoboken, NJ.
- Maimon, O., Rokach, L. Eds. (2005). Data mining and knowledge discovery handbook. Springer. New York, NY.
- Witten, I., Frank, E. (2005). Data mining: practical machine learning tools and techniques 2nd ed. Elsevier. San Fransico, CA.
- <u>http://en.wikipedia.org/wiki/Sensitivity_(tests)</u>
- <u>http://www.sigkdd.org/</u>
- <u>http://www.kdnuggets.com</u>