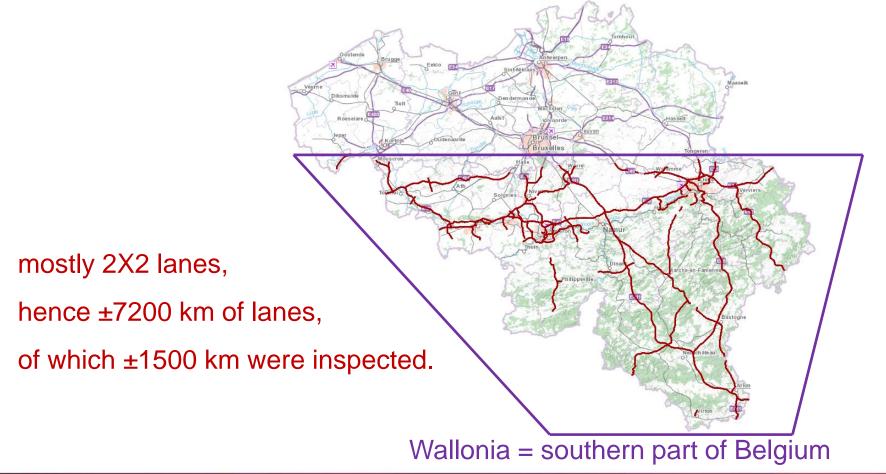
The Conference on STS ICMPA nternatio **The Use of Deflection Measurements in Pavement** Management of the Primary Road **Network of Wallonia, Belgium.**

Carl VAN GEEM (BRRC)

WirginiaTech. Transportation Institute



Pierre NIGRO (SPW)


Bruno BERLEMONT (BRRC)

Map of the network

1200 km motorways + 600 km main roads

Context of presented work

- Primary roads (managed by "SOFICO"):
 - Motorways and main roads.
- Available: surface characteristics
 - roughness, skid resistance, rutting.
- Missing: bearing capacity, residual life
 - Priorities of maintenance based on surface characteristics only,
 - Need for structural analysis of those roads.

Why do we use indicators?

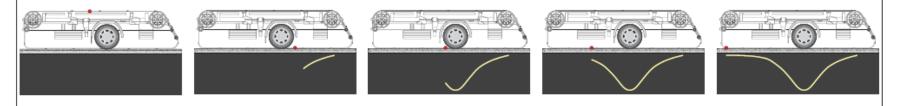
- Road structure details unknown:
 - Back-calculation for the network is unreliable.
- Easy to compute:
 - Direct from "raw measurement data".
- Only needs: classification and prioritization.
- Note:
 - Measurement data are available for detailed analysis (when preparing a call for tender).

What the indicators express?

+ A global indicator

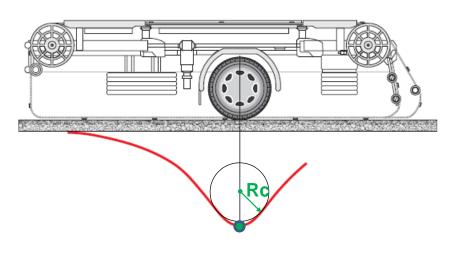
- expressing residual service life, and
- allowing a classification of road sections.
- + Based upon indicators for:
 - 1. Bearing capacity.
 - 2. Bonding between (upper) layers.
 - 3. Cohesion of (whole) road structure.
 - 4. Traffic volume (number of vehicles).
 - 5. Aggressiveness of heavy traffic.

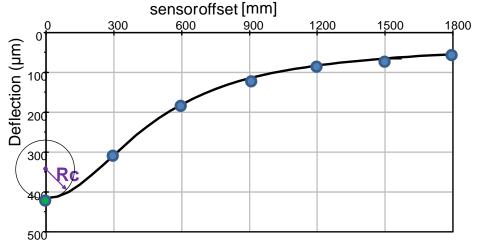
Deflection measurements


- On concrete roads (rigid roads)
 - Falling Weight Deflectometer (FWD)
 - Force: 100kN
 - 1 measurement point every 100m
 - 9 geophones
 (0, 300mm,...,2400mm)

Deflection measurements

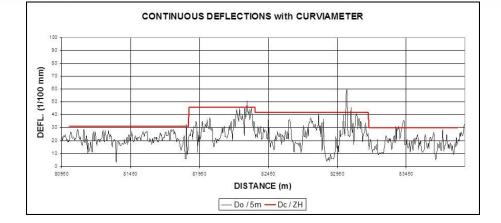
- On bituminous surfaces (semi-rigid roads)
 - Curviameter
 - 13T axle
 (65kN wheel load)
 - 1 point every 5m


Deflection and Curvature Radius

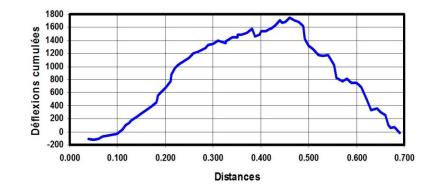

Curviameter

- maximum deflection measured radius
 - 100 points on curve

- maximum deflection
 - computed radius
 - "hysteresis" data



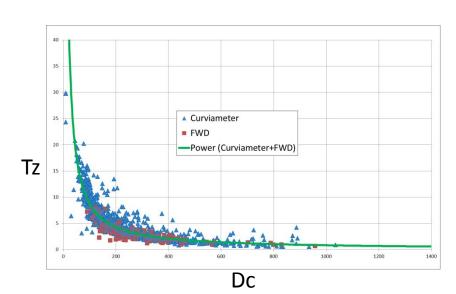
Step 1: "homogeneous sections"


Curviameter

statistical analysis of the maximal deflections *(Dmax)* (as in a French standard)

Also delivers characteristic deflection (Dc) in the homogeneous section: $Dc = Dmax, average + 2.\sigma$

- FWD
- dynamic segmentation by the cumulative sum method (cf. COST 336 of FWD)



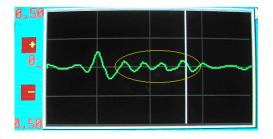
Step 2: compute indicators

- Details/definitions: see paper.
- Philosophy:
 - Exploit available knowledge on data interpretation,
 - Extend carefully where necessary: "same" indicator for FWD (rigid) and Curviameter (semirigid),
 - Combine "structural indicators" into "reasonable global indicator", weighing by "traffic indicators",
 - Check that categorization by global indicator is as good as categorization by back-calculation.

KPI1: bearing capacity

- FWD: Tz = (Rc / Dmax)^{0.5}
 - Rc to be computed for FWD data
 - Tz low ~ bad bearing capacity
- Curviameter: Dc
 - Dc ~ life-time
- Tz α Dc

 Hence: Tz should express bearing capacity of road in reasonable shape.


KPI1: bearing capacity

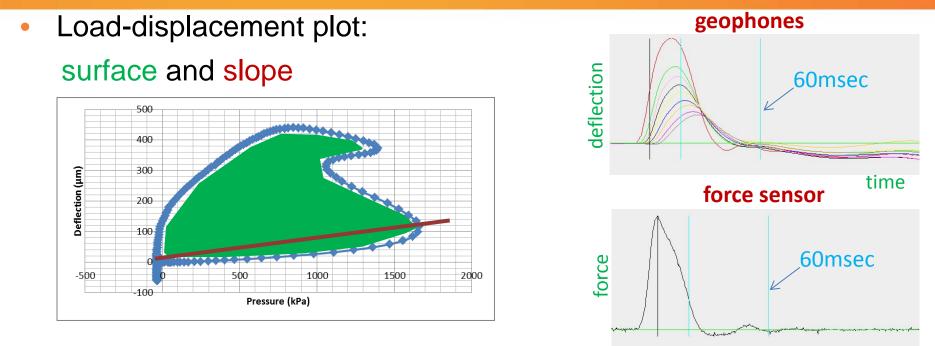
- Product "Dmax . Rc"
 - Large variation in homogeneous section means very bad structural shape of the section.
 - Very high value means critical structural shape.

- KPI1:
 - first a selection on (Dmax . Rc)
 - otherwise: KPI1 = f(average Tz)

KPI2: layer bonding

- Bad bonding in upper layers may give:
 - Small Rc (Curviameter), big D(0)-D(300) (FWD)
 - Noise on raw Curviameter signal:

• KPI2:

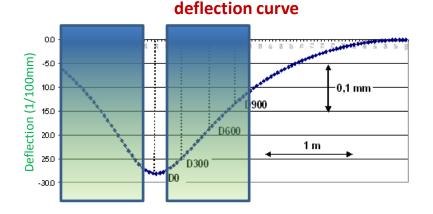

- If large variation in Rc then high KPI2 (bad bonding,
- Otherwise compute KPI2 from:
 - difference between D(0) and D(300)
 - indicator for noise on raw signal

Rc both with FWD and Curviameter)

(in case of FWD)

(in case of Curviameter)

KPI3: cohesion (FWD)


- KPI3:
 - Use D(0), D(900) for "upper part" and D(900), D(2100) for "lower part"
 - Surfaces: all small (KPI3 is good) or all large (KPI3 is bad)
 - Otherwise: count "jumps" for surfaces & slopes, upper & lower part

time

KPI3: cohesion (Curviameter)

• E(0) = difference of these areas under the curve:

(inspired by "energy" surface of FWD)

- KPI3:
 - Compute in homogeneous section:
 - Average Em of E(0), standard deviation σM
 - 1st criterion: **Em very small** (good) or **very large** (bad)
 - Else, 2nd criterion: σM small (rather good)

or **oM large** (rather bad)

KPI4 and KPI5: traffic

- KPI4: any type of vehicles
 - daily average number of vehicles, as counted
 - rescaled on interval [0;5]
- KPI5: heavy vehicles only
 - different for rigid and semi-rigid road
 - aggressiveness factor w.r.t. standard axle load
 - transfer from % of heavy vehicles to average spectrum of the province (since we don't have traffic spectrum on each location)
 - rescaled on interval [0;5]

Global indicator residual service life

- KPI1 (bearing capacity) is transformed using KPI4 and KPI5 (traffic): KPI1m
- Combined indicator
 CSI = (KPI1m + KPI2 + KPI3) / 3
- Global indicator:
 - CSI > 3: road is "end of life", GI > 4
 - Otherwise: GI gets "cubic effect" of characteristic deflection on expected life time.

GI versus back-calculation

- Back-calculation (as on "project level"):
 - linear-elastic model,
 - on 53 homogeneous sections, 8 road structures.
- Observations:
 - similar categorization of structural health,
 - this back-calculation also has its limits,
 - useful to compare life-time expectance not only with GI but also with Tz, KPI1, KPI2, KPI3.

Conclusions

- these indicators:
 - down to earth, pragmatic approach.
- imperfections but:
 - GI gives a good categorization,
 - checked by back-calculation.
- network level indicators:
 - easy to compute from raw measurement data only,
 - global indicator is used for priority setting.
- detailed data are still available:
 - KPI1 (Tz), KPI2, KPI3: first indication of cause of distress,
 - deflection data for tender preparations for road works.

The Use of Deflection Measurements in Pavement Management of the Primary Road Network of Wallonia, Belgium.

<u>Carl VAN GEEM (BRRC) – c.vangeem@brrc.be</u> Pierre NIGRO (SPW) - pierre.nigro@spw.wallonie.be Bruno BERLEMONT (BRRC) – b.berlemont@brrc.be