

Managing Fatigue 2017 San Diego, March 22

A Wider Perspective on Reducing Fatigue Risk in Aviation

- And the importance of metrics

Tomas Klemets, Head of Scheduling Safety, Jeppesen

Copyright © 2017 Jeppesen. All rights reserved

What is *fatigue*? And *fatigue risk*?

" A physiological state of reduced mental or physical performance capability resulting from sleep loss, extended wakefulness, circadian phase, and/or workload (mental and/or physical activity) that can impair a person's alertness and ability to perform safety related operational duties."

Time awake

Fatigue Risk ≈ the risk of a **lapse**, **slip**, **mistake** and/or **violation** by crew as a consequence of reduced alertness, with potentially negative impact on flight safety.

Prior sleep debt

Time of day

ICAO

Let's imagine for a moment that we are regulators defining flight and duty time limits.

W19

50

A860

Miller

We need a quick decision...

In order to reduce fatigue risk, for flight duties starting between 8pm and 5am, should we:

Increase max flight duty time with 30 minutes, OR (10h → 10h30m)

Max 10h duty time

We need a quick decision...

Max 10h duty time

Metrics for more informed decisions

- Can we quantify fatigue risk?
- Perhaps not an absolute quantification, but one allowing us to compare?
- Not just one flight but the <u>overall</u> risk?
- We <u>do</u> have validated bio-mathematical fatigue models
- Prediction of alertness/fatigue/effectiveness for a population at any point in time

Metrics for more informed decisions

But what about a set of flights?

How much better is the lower distribution?

Fatigue Model Accuracy

doi:10.7910/DVN/26541, 20 Oct 2014 SRI, Swedish CAA, SAS, Jeppesen

- Reasons for inaccuracy
 - Models are not perfect (!)
 - Models under-informed
 - Need to predict sleep
 - Habitual sleep length, Diurnal type, Individual commute times etc.
 - Mitigations
 - Social factors
 - Inter-, and intra-individual variation

Fatigue Risk – as a function of KSS

Predicting road crashes from a mathematical model of alertness regulation— The Sleep/Wake Predictor

Torbjörn Åkerstedt^{a,*}, Jennie Connor^b, Andrew Gray^b, Göran Kecklund^a

A Real World Example

The Risk of Human Error (Lapses, Slips, Mistakes, and Violations)...

Alertness Distribution

 Scenario file:
 FA20110620_01

 Model:
 BAM Version:
 1.1.6 Unit:
 CAS-50

 Created:
 15Aug2011 16:42:50
 By:
 klemets2

The operational risk for the airline is the sum of risk contributions of all the flights (in the tail of the distribution).

Proposed metrics for overall risk

AFR, Absolute Fatigue Risk

- A weighted sum over all flights, with an accelerating weight as the prediction approaches zero
- − ✓ Detailed representation of risk, as we know it.
- X Becomes a bit abstract.

Copyright © 2017 Jeppesen. All rights reserved

- NFR, Normalized Fatigue Risk.
 - AFR divided over number of flights.

So; An operation keeping it's structure but doubling in size will have 2 times the AFR (double risk for fatigue related incident/accident) but the same NFR (risk profile).

Good for spotting trends and picking out base/rank/fleet/station with the relatively highest, or shifting, risk.

Monitoring Fatigue Risk

Control of Fatigue Risk

- "Normal" planning rules/focus w/o any true guidance on human physiology
- Same rules but <u>also</u> using a BMM providing an incentive during planning to avoid poorly planned flights.
- Same data. Same rules. Almost identical crew efficiency.

But much lower risk.

We need a quick decision...

Shorter flight duties \rightarrow More flight duties \rightarrow More Dep Arr commute/briefing/debriefing time \rightarrow More consecutive flight duties \rightarrow More disrupted Flight physiological nights \rightarrow More sleep debt Duty → Higher risk? **Quantify the systemic** B onse on real crew plans! Max 10h duty resp time

Summary

- Traditional rules are blunt instruments. So are cut-offs based on bio-mathematical models
- Output from fatigue models can be used to effectively monitor, prevent and reduce fatigue risk exposure
- The industry would benefit from <u>standards</u> for predictive risk metrics, such as AFR and NFR here presented.
 - What you can't measure...
- Gains are significant...
 - From max 60h to 70h...

Backup slides from here onwards

The "Comprehensive Study" 2011 - preconditions

- OAG data for May 2011.
 - Over 300 planning problems selected, all >200 flights/week
- Only two-pilot operation
- Applying only flight time regulations
- Optimal base-distribution of crew.
- Aircraft rotations built using FIFO algorithm.
 - Crew may always follow A/C in turns
- Deadhead only on own carrier
- Pairing construction, striving for efficiency
 - Minimizing synthetic for US and CA operators
 - Maximizing productivity elsewhere
 - Basic, normal, planning constraints limiting e.g. A/C changes.
- Evaluation using BAM 1.6.1
- PA5 used as main KPI for the safety of a solution
- In total over 2100 plans built consuming some 4000 CPU

Conclusions of the study

- Fatigue is significantly linked to the business model of the operator.
- FTLs in current form do not limit fatigue effectively.
- Current FTLs have a more significant effect on efficiency than on fatigue risk.
- FAR allows for the highest efficiency, but is also the FTL least protective from fatigue.
- DGCA is the most protective FTL for fatigue risk but is generally most restrictive on efficiency.
- Fatigue models are needed to provide direction within FTLs. And also for improving them...

The Misalignment btw Fatigue and Work load...

The Misalignment btw Fatigue and Work load...

Operator objective (in part) – crew productivity

Fatigue (Risk) Management – if done right...

The value of an FRMS approach

- Safety (lower risk of incidents/accidents)
- Crew quality of life
- Compliance / liability / goodwill
- Crew efficiency!

