

Centre for Interdisciplinary Development and Research on Environment, Applied Management and Space Centro Interdisciplinar de Desenvolvimento e Investigação em Ambiente, Gestão Aplicada e Espaço

Fatigue in a regional aircraft operator: the effect of multi-segment operations in alertness

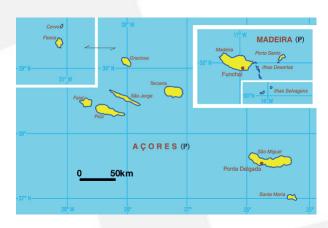
MSc Pedro Alcéu

ICAO definition of Fatigue

A physiological state of reduced mental or physical performance capability resulting from sleep loss or extended wakefulness, circadian phase, or workload (mental and/or physical activity) that can impair a crew member's alertness and ability to safely operate an aircraft or perform safety-related duties. **SYMPTOMS CAUSES** CONSEQUENCES

What is the impact in alertness of flying short multiple sectors during a single duty day in a potentially challenging environment?

- To identify the preeminence of the need to manage fatigue in air crew members
- To integrate fatigue hazards and its risk management in the framework of an existing SMS according to the new ICAO and European regulations
- To infer real risk already present in the airline through subjective fatigue queries
- To validate the chosen methods and processes so as to lead sustainable fatigue management implementation and maintenance


Research Context

Regional Airline

- Short:00h15
- Long: 02h00

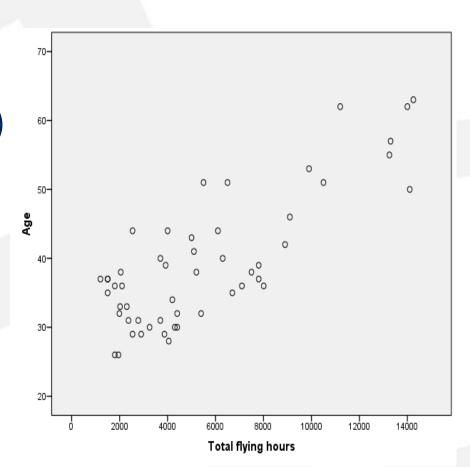
Methodology

- Literature review
 - Online scientific databases
- Questionnaire
 - Google forms
 - Based on Nasa's fatigue study in regional operators
 - Goals:
 - analyze demographics, personal and social habits
 - Evaluate fatigue and safety gaps

Methodology

• Diary:

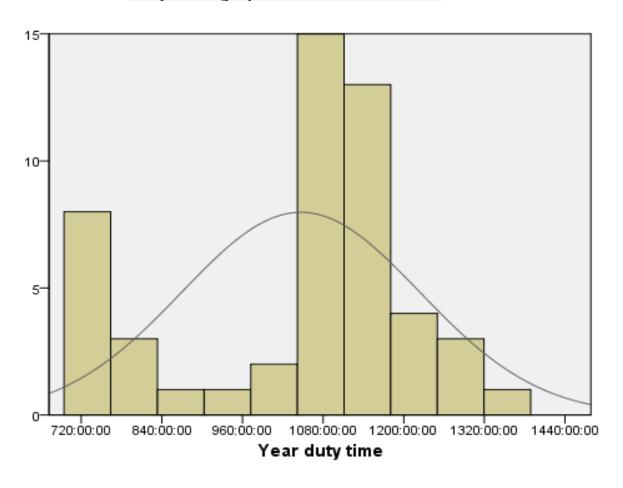
- Start and end times for the duty day;
- Samn-Perelli Fatigue Scale (Samn & Perelli, 1982) and the Karolinska Sleepiness scale (Akerstedt & Gillberg, 1990);
- NASA's TLX measurement, on a simplified version adapted to this study;
- Assessment of further disruptions during the day.


Questionnaire and diaries:

- Available for one month;
- Approved by the Airline's management and the Safety Department

Universe

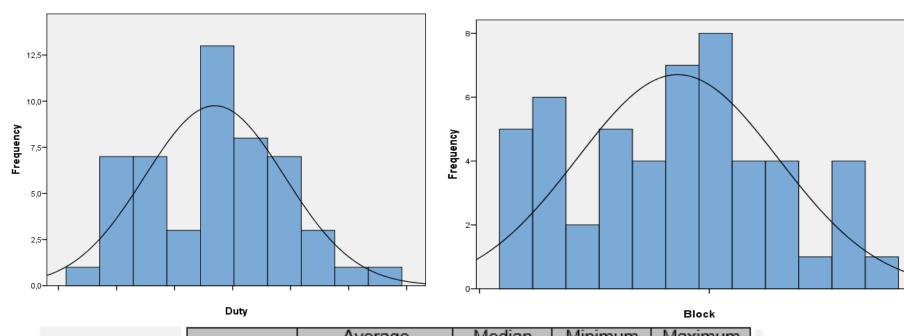
- 52 individuals all male
- Average age 39.2 (±9,539)
 - 27 Captains:
 - mean age 44.2 (± 10,059)
 - Youngest: 30 years old
 - Oldest: 63 years old
 - 25 First Officers:
 - mean age 33.8
 - Youngest: 26 years old
 - Oldest: 44 years old



Questionnaires

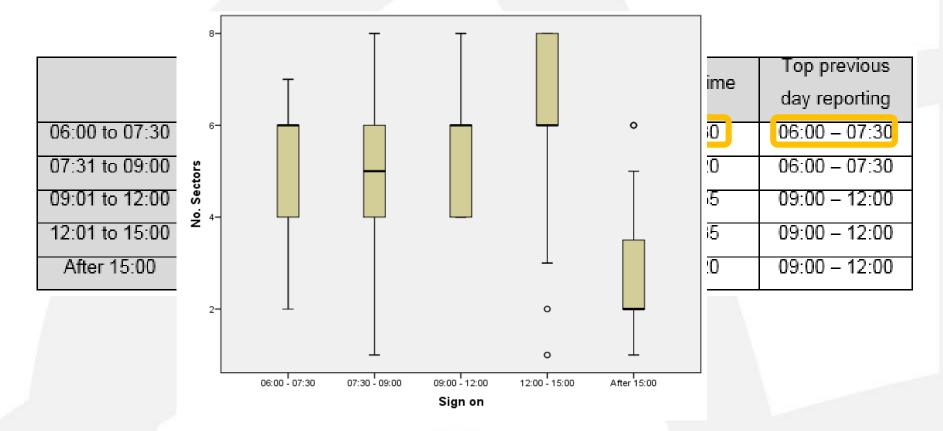
- 26 responses:
 - Representative sample (age and total flying hours)
 - Average age: 37 years old, [26;55], 50% bellow average
 - 70% married
 - More than 50% have up to 3 dependants
 - 50% have high school education (only 1 post-graduated)
 - 30% smokers
 - 85% practice exercise
 - 76.9% ingest caffeine daily
 - Diet is typical Portuguese/Mediterranean

Analisys of planned schedules

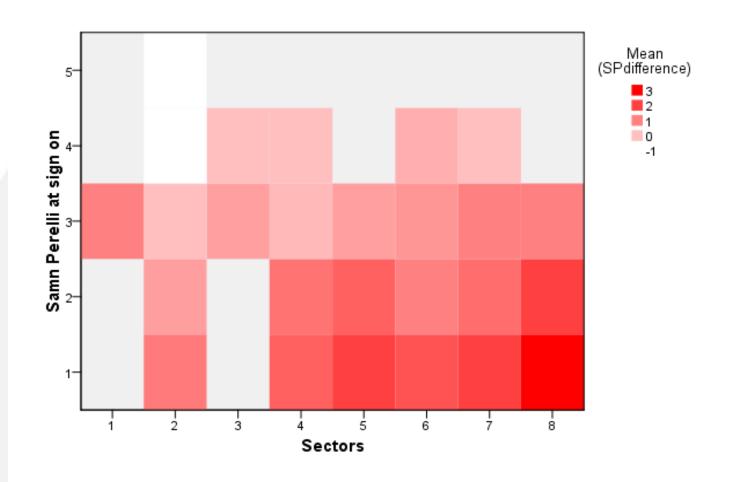

Analisys of planned schedules

			Sectors vs S/on times			
1.200					No. of sectors	
	Weight in total	Sector count	Duty length	Rest time	Previous day	
	Operation				start time	
Up to 06:00	10 %	6	08:00	17:15	07:30 to 09:00	
06:01 to 07:30	13,1 %	4	06:45	18:00	06:00 to 07:30	
07:31 to 09:00	24,2 %	4	06:30	18:05	07:30 to 09:00	
09:01 to 12:00	21,3 %	4	07:00	17:00	09:00 to 12:00	
12:01 to 15:00	21 %	5	06:00	18:40	12:00 to 15:00	
After 15:00	10,4 %	2	04:00	22:45	12:00 to 15:00	
0.00 0.00	10.00 12.00 14.00 Son	10.00 10.00 20.00	Up to 06:00 06:00 - 07: 07:30 - 09: 09:00 - 12: 12:00 - 15: After 15:00 00 00			
			S/on time			

Live trial


1 - Identify total times for the period and their distributions

	Average	Median	Minimum	Maximum
Duty	88:35 (+- 28:57)	88:00	27:09	159:31
Block	20:40 (+- 10:32)	22:00	02:05	42:03



Live trial
Segment the flights by reporting time

Live trial

Conclusions

- Fatigue has a big impact in human performance and consequently in flight operations
- Early start time of the duty day has a negative influence in alertness
- Number of sectors flown further aggravates sleepiness and consequently a reduces alertness

Limitations

- Study performed in the winter months –
 operational discrepancy with year round reality
- Limited amount of time to colect data and infere more significant results
- Lack of fatigue studies with regional aircraft operators

Future directions

- Overview and control groups with higher block and duty hours
- Monitor early hour starts due to the potential risks associated with circadian disruption and sleep debt
- Further validate and monitor the impact of high workload in flight operations
- Perform a year round study to encompass the different variations in the operational context

