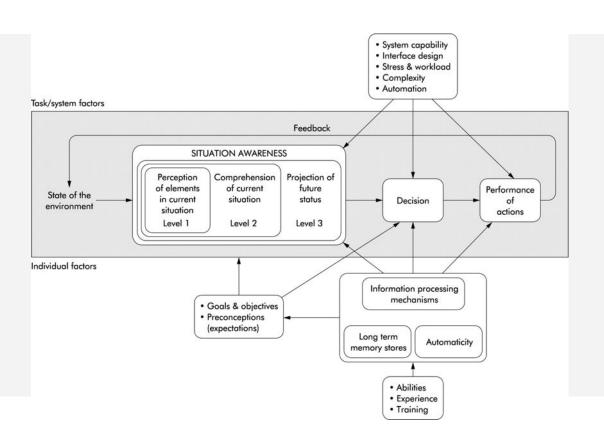


Technology Enabled Management of Sleep Loss as a Strategy to Mitigate the Underlying Cause of Fatigue in Transportation

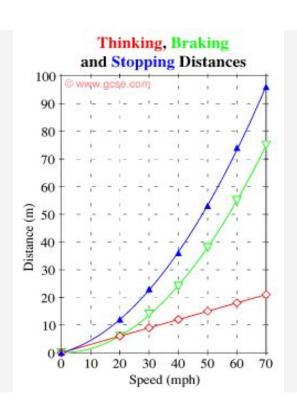

Jeffrey Durmer, MD, PhD Chief Medical Officer, FusionHealth


Fatigue is Defined By its Effects

Cognitive subscale	Never	Rarely	Sometimes	Often	Almost always	
1. I have been less alert	0	1	2	3	4	
2. I have had difficulty paying attention for long periods of time	0	1	2	3	4	
3. I have been unable to think clearly	0	1	2	3	4	
4. I have been forgetful	0	1	2	3	4	
5. I have had difficulty paying attention for short periods of time	0	1	2	3	4	
6. I have had difficulty making decisions	0	1	2	3	4	
7. I have been less motivated to do anything that requires thinking	0	1	2	3	4	
8. I have had trouble finishing tasks that require thinking	0	1	2	3	4	
9. I have had difficulty organizing my thoughts when doing things	0	1	2	3	4	
10. My thinking has been slowed down	0	1	2	3	4	
11. I have had trouble concentrating	0	1	2	3	4	
				Cognitive subscale score		
Physical subscale	Never	Rarely	Sometimes	Often	Almost always	
12. I have had to pace myself in my physical activities	0	1	2	3	4	
13. I have been less motivated to do anything that requires physical effort	0	1	2	3	4	
14. I have trouble maintaining physical effort for long periods	0	1	2	3	4	
15. I have trouble maintaining physical effort for short periods	0	1	2	3	4	
16. I have been physically uncomfortable	0	1	2	3	4	
17. I have been less able to complete tasks that require physical effort	0	1	2	3	4	
18. I have needed to rest more often or for longer periods	0	1	2	3	4	
100 0				Physical subs	scale score	
Psychosocial subscale	Never	Rarely	Sometimes	Often	Almost always	
19. I have avoided/eliminated certain tasks, activities and lifestyles	0	1	2	3	4	
20. I have been less motivated to participate in social activities	0	1	2	3	4	
21. I have been limited in my ability to do things	0	1	2	3	4	
* 2000 to 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			F	Psychosocial subscale score		
				Total MFIS-S	SCI score =	

Modified Fatigue Impact Scale (Fatigue Severity Scale)

Studying the Effect of Fatigue on Situational Awareness



The Focus is on the Task

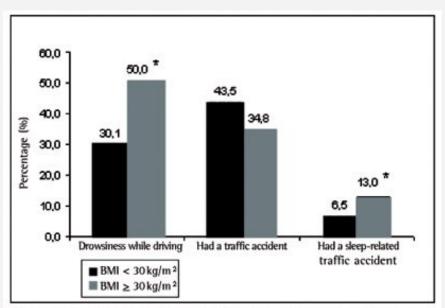
The Focus is During the Task

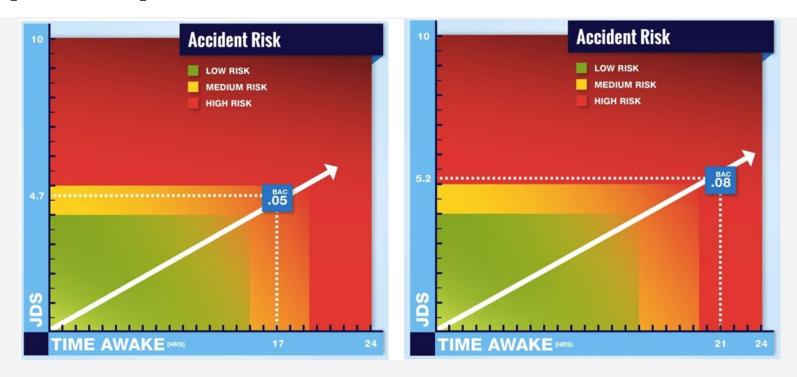
Model of Situational Awareness in Dynamic Decision Making (Endsley, 1995)

Tools that Focus on Individuals *During* a Task

New Focus on the Individual Before a Task

Biometrics Predict Risk for Situational Awareness Related Accidents

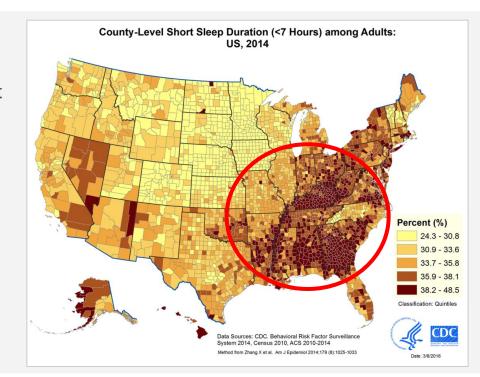


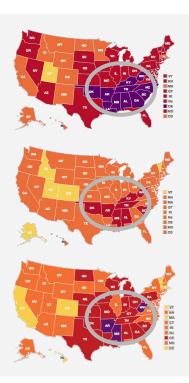

Figure 3 - Drivers divided according to sleepiness, number of accidents and BMI, in percentages p < 0.05; BMI: body mass index

Focus on the Person BEFORE the Task

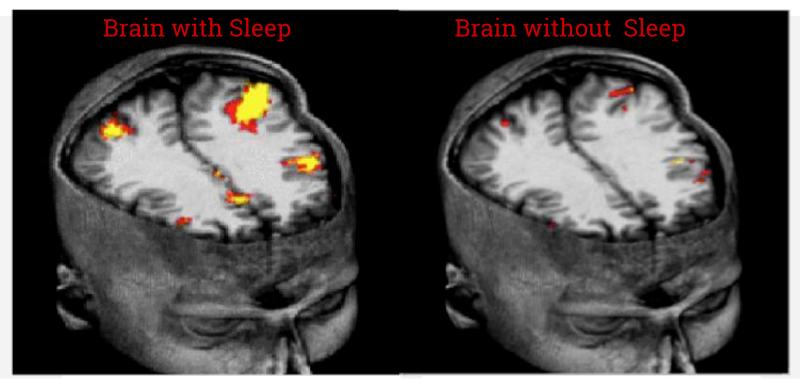
Predict and Prevent Accidents

Research on the Individual Risk Factors


Sleepiness is Equivalent to Alcohol Intoxication when it comes to Accidents

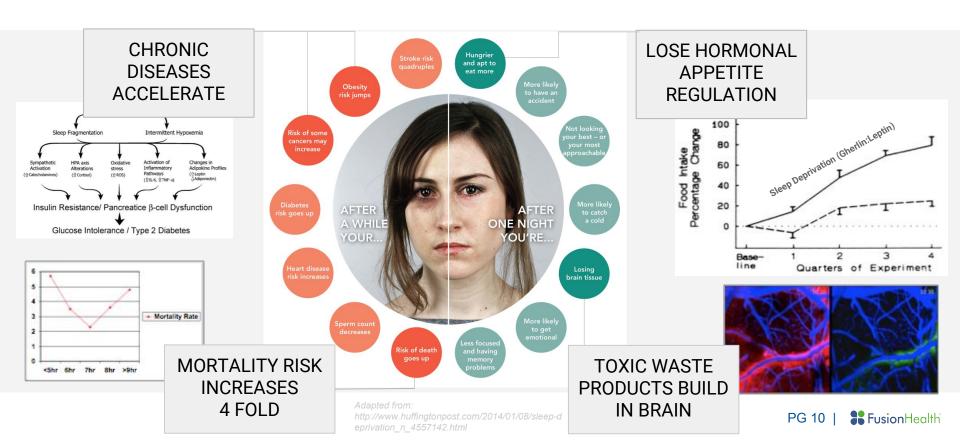


Research on People with Chronic Diseases Data Demonstrates Poor Sleep May Drive Disease


Over ⅓ of US adults Do Not sleep 7 or more hours/night

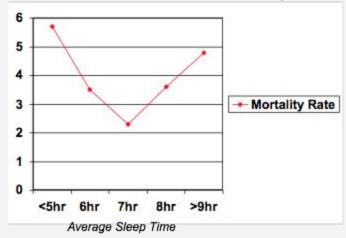
Adults in the Southeast and Appalachian Mountains had the lowest average sleep times

Sleep Deprivation Affects All Cognitive Skills

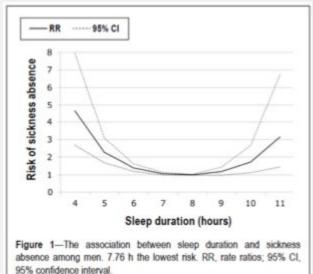


Sleep - Normal Activity & Preserved Performance

Sleep Deprivation - Loss of Activity & Loss of Performance

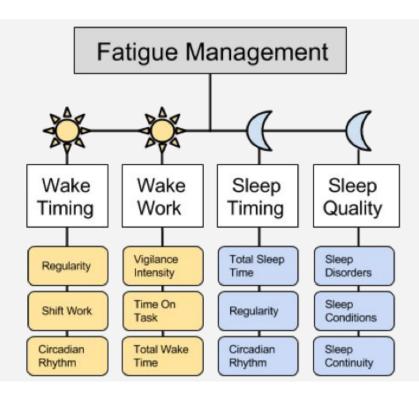


Body System Functions Depend on Sleep

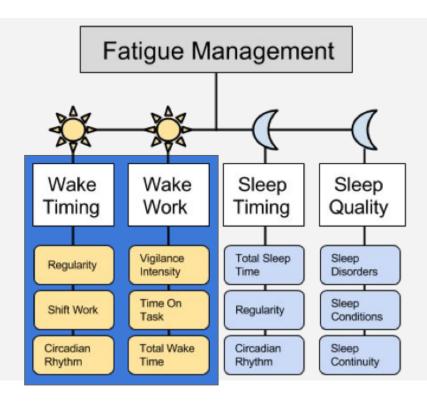


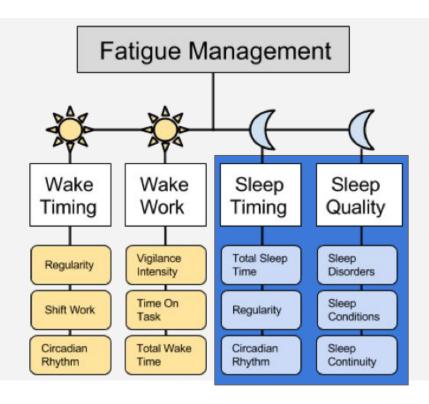
Sleep Duration is Correlated with Sickness Absence from Work

10,308 British civil servants followed 17 years



3,760 working men and women 7.2 years




Workplace Fatigue Management

Many Safety Sensitive Workplaces Know...

Most Workplaces Do Not Know...

Engaging a Large Mobile Population

Wellness Programs

DM Programs

HR Programs

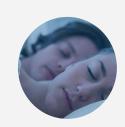
Safety & Risk

Connect™ Integration Points

ENGAGEMENT

SleepCharge™ Member Experience

GUIDANCE


Newton™ Guidance Logic

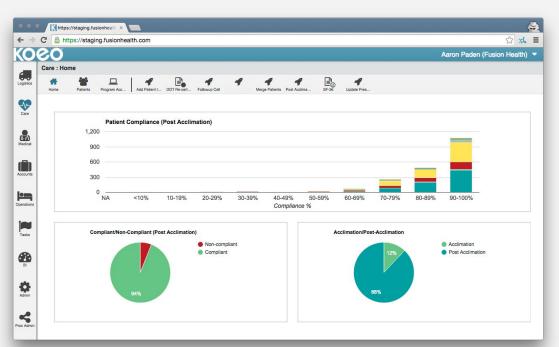
INTERVENTIONS

Restful™ Pathway Solutions

MANAGEMENT

Restful™ Continuous Care

SUPPORT: Engagement Plan Design + Sleep Coaches + Sleep Therapists + Physicians


Integrated Pathways Create Complete Solutions

GUIDANCE INTERVENTIONS MANAGEMENT Sleep Breathing Resourceful™ Coaching Tech & Materials Mind Therapy Mindful™ Thoughts Support & Behaviors Body Tracking Multi-Level Powerful™ **Rhythms Telemedicine** Physical Performance Connected Connected Newton™ Restful™ Restful™ **Guidance Logic Pathway Solutions** Continuous Care

Obstructive Sleep Apnea Outcomes

For All Participants (n	=4,508)
Avg Age	49.8 yr
Male / Female	90% / 10%
Avg AHI reduced from	34 to 1.5
Avg. Daily Adherence	96%
Days Use/Wk	6.4 days
Hours Use/Day	6.1 hours
Avg. Program Retention	94% over 6 yr

Obstructive Sleep Apnea Outcomes

n = 2,844 Professional Drivers

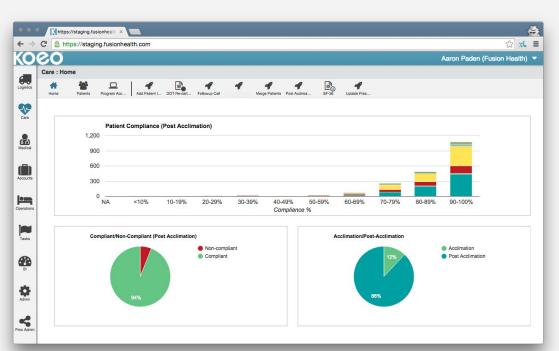
Avg Hrs Succ Use	n	Avg Hrs Use/Day	Avg Days/Week	Test AHI	AHI 30d	Effort 30d	Compliance 30d
> 8	435	8.7	6.9	49.4	1.3	98	96.0
7.5-7.9	199	7.8	6.9	30.0	1.5	99	97.0
7.0-7.49	295	7.2	6.9	32.0	1.2	98	95.0
6.5-6.9	344	6.7	6.9	39.0	1.2	98	94.0
6.0-6.49	344	6.3	6.8	37.3	1.3	96	91.0
5.5-5.9	354	5.7	6.7	37.8	1.3	94	88.0
5.0-5.49	260	5.3	6.6	37.8	1.3	92	85.0
4.5-4.9	258	4.8	6.4	33.9	1.1	89	82.0
4.0-4.49	164	4.3	6.1	34.3	1.3	83	76.0
< 4.0	191	2.9	4.6	33.9	1.8	62	54.0

> 4 hrs

2653

6.3 hrs/day

6.7 days/wk


94% Effort

90% Compliance

Obstructive Sleep Apnea Outcomes

For Professional Drivers (n=2,653) Avg AHI reduced from 37 to 1.4 Use > 6hr/night 60% Days Use/Wk 6.7 days Hours Use/Day 6.3 hours QoL changes at 90 days: Mental Health +19% Physical Health +14% Vitality +25% Health Change +38%

Two Year Matched Cohort Study

Measure	Subjects	Matched Cohort	12 Mo (n=96/96)	24 Mo (n=85/85)
Med/Pharm. Costs	22.4%	45.1%	-22.8% pts	-22.7% pts
ER Visits	11.5%	-5.4%	•-88.9% pts	16.9% pts
Hospital Admits	49.3%	84.4%	-60.0% pts	-35.1% pts
Hospital Days	70.0%	394.0%	-923.1% pts	-324.0% pts
Preventable Accidents	-44.9%	30.3%	∻ -68.8% pts	★-75.2% pts
Incidents	8.2%	19.6%	10.6% pts	-11.3% pts

•p = 0.06 •p = 0.02 ★p = 0.04

Subjects

100 employees and 100 matched cohort recruited from existing employer population based on need for OSA evaluation

Matched Cohort

From claims over same time period – matched for age, gender, BMI, medical conditions, job, and cost quartile. No OSA diagnosis noted in claims data.

Sleep Charge Program Outcomes

Fortune 500 Company

VITALITY, SOCIAL FUNCTIONING, HEALTH,
PRODUCTIVITY AND RETENTION

Employees are

50% healthier

25% more productive

SLEEPINESS, ACCIDENT INCIDENTS AND HEALTHCARE COSTS

Reduced accident rates by

saved 56%

in healthcare claims costs

Sleep Charge Program Outcomes

Fortune "200" Company

EFFECTIVE DELIVERY OF CARE
SIGNIFICANT PHYSICAL & MENTAL BENEFITS

Health Care delivery improved by

160%

Employees show

34% more Vitality

MANUFACTURING ERROR RATES
HEALTH CARE SPEND WASTE

In 3 months,

40% +

less Errors in Production

\$250k

in Health Care System Expense Waste

2016 FMCSA MRB OSA Recommendations

Testing Criteria

Individuals with a **BMI of 40** or greater, and Individuals with a **BMI 33 to 40** with at least three or more:

Hypertension (treated or untreated)

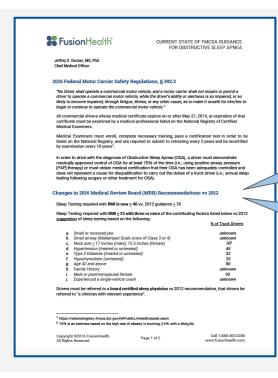
Type 2 Diabetes (treated or untreated)

History of stroke, coronary artery disease, or arrhythmias

Micrognathia or retrognathia (receding chin)

Loud Snoring or Witnessed apneas

Small airway (Mallampati Classification of Class 3 or 4)

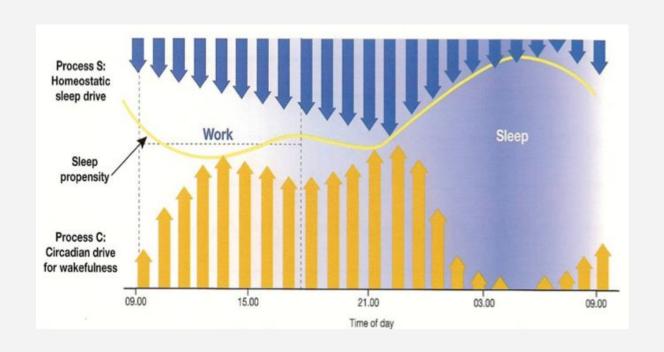

Neck Size of > 17 inches (male), 15.5 inches (female)

Hypothyroidism (untreated)

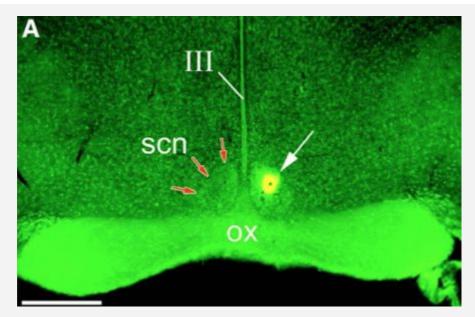
Age 42 and above

Male or postmenopausal female

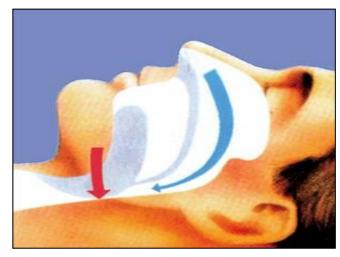
2016 FMCSA MRB OSA Recommendations


Given the Known Prevalence of Drivers
with a BMI > 33 who are also:
Male
Over 42
>17" Neck

It is Expected that **56-64%** of All Current Truck Drivers **May Require Sleep Testing** & As Many as **54% May Require Treatment**

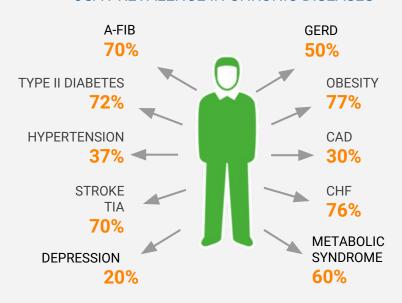

Life on Earth Follows a Universal Rhythm

Light Activates Our Circadian Rhythm


Our Brain Has Adapted to Create Sleep and Wake

In the human brain, 10,000 neurons fire together every 23.8 to 24.6 hours and drive us into wake and stop sleep. This intrinsic pattern is our Circadian Rhythm.

Obstructive Sleep Apnea (OSA)

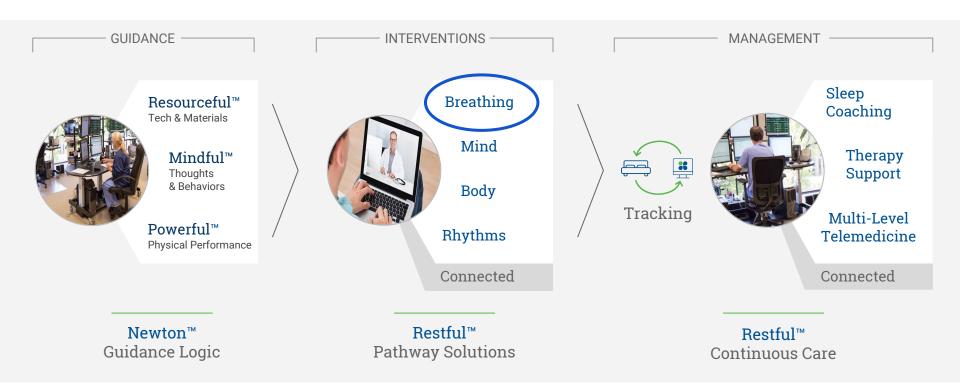

OPEN

OBSTRUCTED

Apneas + Hypopneas / Hours of Sleep = **Apnea Hypopnea Index** (AHI) (Normal \leq 5/hr) (Mild = 5.1-14.9/hr) (Moderate 15-29.9/hr) (Severe \geq 30/hr)

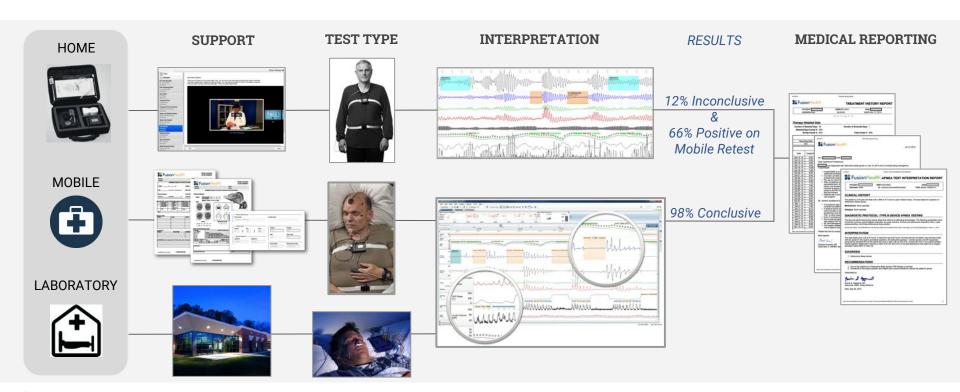
OSA is a SILENT KILLER

OSA PREVALENCE IN CHRONIC DISEASES

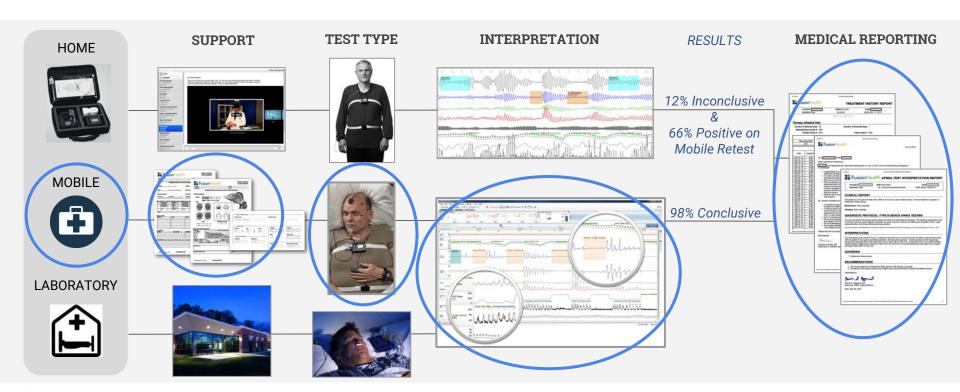


PREVALENCE OF CHRONIC DISEASES IN OSA POP

Prevalence of Sleep Disorder Related Conditions	Sleep Apnea Multiplier	
Obesity	6.4x	
Hypertension (HTN)	3.2x	
Coronary artery disease (CAD)	4.1x	
Peripheral vascular disease (PVD)	3.0x	
Cardiac dysrhythmias	4.0x	
Cerebrovascular disease, ischemic (eg., ischemic stroke)	4.1x	
Cerebrovascular disease, hemmorhagic (eg., hemmorhagic stroke)	1.2x	
Congestive Heart Failure (CHF)	6.3x	
Diabetes mellitus (DM)	3.8x	
Hyperlipidemia	2.8x	
Pulmonary heart disease	6.0x	
Gastroesophageal reflux disease	3.7x	
Iron deficiency anemia	2.8x	
Depression	1.6x	
Headache, migraine/vascular type	2.0x	
Headache, non-migraine type	2.8x	


Einhorn et al. Endocrine Prac 2007; O'Keefe and Patterson Obes Surgery 2004; Tasali E et al., OSA and type 2 diabetes. Chest 2008;133:496-506; Sjostron et al. Thorax 2002, Bassetti et al. Sleep; 1999, Schafer et al. Cardiology 1999; Oldenburg et al. Eur J Heart Failure, 2007; Harvard Med School & McKinsey Co. The Price of Fatigue Report: the surprising economic costs of unmanaged sleep apnea, December, 2010; National Institute of Health, Centers for Disease Control and Prevention; Lee J. et al. Poor-quality sleep is associated with metabolic syndrome in Korean adults, Tohoku J Exp Med 2013;231:281-91; Tasali E et al., OSA and metabolic syndrome. Proc Am Thorac Soc 2008;5:207-17; Parish JM et al., Relationship of metabolic syndrome and OSA. J Clin Sleep Med 2007;3(5):467-72; Goyal SK and Sharma A, atrial fibrillation in OSA. World J of Cardiol 2013;5(6):157-63; Kanagala R et al., OSA and GERD-the importance of obesity and gender. Sleep Breath 2015;19(2):585-92; Sharafkhaneh A et al., Association of psychiatric disorders and OSA in large cohort. Sleep 2005;28(11):1405-11; Gupta MA et al., OSA and psychiatric disorders-a systematic review. JCSM 2015;11(2):165-75.

Integrated Pathways Create the Solution



Diagnosing OSA

Diagnosing OSA for Professional Drivers

User-Centered Engagement

SleepCharge Client Website

SleepCharge Mobile Platform App

SleepCharge Web App

= SEAMLESS EXPERIENCE + CONTINUOUS SUPPORT