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A modeling world?
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Fatigue Modeling

First sleep/circadian models in 1980’s
Process S + Process C

MIT Biomathematical Modeling Workshop (1999)

“identification of strong points and limitation of the models...

comparison of their predictions with empirical data...”

Fatigue and Performance Modeling Workshop (2002)

Goal: to provide predictions of sleepiness, performance

capability, and/or risk
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Individual Differences

Sleep need: long vs short

Circadian clock

— Morningness/ eveningness

— 5-hour range in phase

Age

Countermeasure use and effectiveness
— Caffeine tolerance, other health conditions, etc.

Effects on performance

— Resilient/ vulnerable/ neither
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NASA Risk Reduction Requirements
for Space Flight

We need to develop individualized
scheduling tools that predict the effects of
sleep-wake cycles, light and other
countermeasures on performance, and
can be used to identify optimal (and
vulnerable) performance periods during
spaceflight

We need to identify an integrated,
individualized suite of countermeasures
and protocols for implementing these
countermeasures to prevent and/or treat
chronic partial sleep loss, work overload,
and/or circadian shifting, in spaceflight
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Challenges to Modeling
Performance in Space

y993vLLS

* Micro-gravity

* Excitement

» Stress

« Sleep fragmentation

* Intermittent light exposure

* Novelty of new environment

« Changes in vestibular function
* Mission requirements/schedule
« Circadian phase misalignment

* Uncontrolled countermeasure use Nan
— Wake and sleep promotion
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Modeling Use and Cautions

* FAA: “..models can serve as useful tools when evaluating the
placement and timing of critical flight phases...one can plan
with the model but must confirm the effect” (AC 120-100;
2010)

* |CAO: “models can be helpful tools in FRMS...[as] it is hard to
visualize the dynamic interactions of processes like sleep loss
and recovery, or the circadian biological clock. To use models
properly requires some understanding of what they can and
cannot predict” (2015)




Study Goals

Compare model performance predictions to PVT
outcomes derived from 3 field and 2 lab study data sets

- Challenging schedules with range of imposed sleep
schedules including non-24 hr ops

4 models studied
Input Interface Output

3-day acclimation period removed for analysis

Inform use of models for long-range space travel
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wEE - Approach: using SAFTE/FAST

Input Interface Output

Work schedules Modeling program
/

Sleep Logs Modeling program

Predicted effectiveness: percent of well-rested baseline
performance, refers to mental capability or speed of
cognitive performance

Predictions based on group average data
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Airline pilot wins major legal victory on fatigue

“...took the difficult decision not to fly after three
extremely early starts in a row, including one 18-hour
day, and what would have been a 19-hour day to
follow...fatigue modeling software showed that because
of the run of duties he had done, if he had flown his
rostered flight he would have landed at the end of his
duty with a predicted performance loss...”
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Comparing Schedules
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Short-Haul Airline Pilot: Resilient
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Short-Haul Airline Pilot: Vulnerable
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Vulnerable:
Predicted Effectiveness vs Actual Response Speed
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Findings

* Models can provide reasonable “big picture”
information on schedules

— Not appropriate for individual-level modeling

* Group results and predictions in concert for
most aspects of studied schedule
 Model output is only as good as the input

— Individual differences
— Countermeasure use

e Similar findings from other models
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Final Steps

 Complete analyses
— Scaling measures for consistent comparisons

— Measures of fit for predicted vs actual

e Other datasets include non-24 hour schedules
and other countermeasures

— Final analyses near completion
— Comprehensive report
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