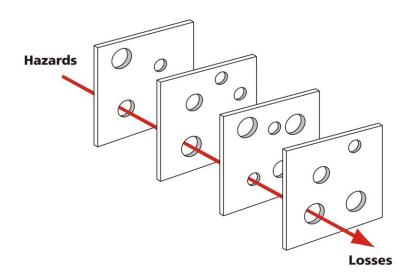


10th International Conference on Managing Fatigue

Feng Guo San Diego, CA March 21, 2017

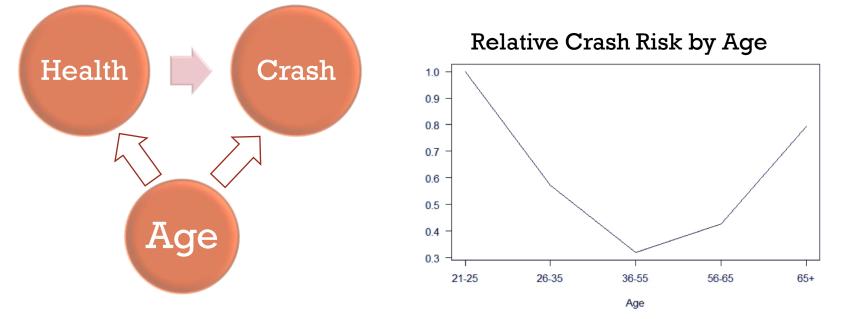
EVALUATE THE RELATIONSHIP BETWEEN FATIGUE AND DRIVING SAFETY

Objective: to establish causal relationship


STUDY DESIGN

- Define overall structure of the study
- Guide how the data should be collected and analyzed
- How strong the evidence toward causal conclusion
- Randomized controlled trials
 - Exposure assigned by researchers
 - Better control for confounding
 - Lab or simulator studies
 - May not feasible or ethical for some studies
- Observational studies
 - Exposure status self-selected by participants
 - Generally feasible
 - More susceptible for to confounding
 - Cohort; case-control; case-crossover; cross-sectional designs

CHALLENGES IN CAUSAL INFERENCE


- Complex causal structure
 - Vehicle
 - Driver
 - Fleet
 - Traffic/Environment
- Models
 - Swiss cheese model
 - Haddon matrix
 - Minimum sufficient risk set
- Causal effect
 - Potential outcomes
 - Association ≠ causal effect

ANALYSIS METHODS FOR OBSERVATIONAL STUDIES

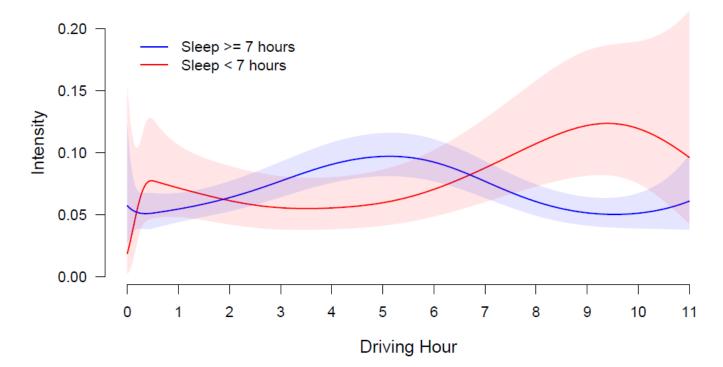
Confounding: other risk factors leading to bias in fatigue-crash relationship

ANALYSIS OBSERVATIONAL STUDIES

- Control through design
 - Matched cohort or case-control
 - Case-crossover
- Analysis options
 - Regression
 - Propensity score
 - Instrumental variables
 - Regression discontinuity
 - Marginal structure models
 - • •
- Limited use in traffic safe analysis.
 - Data: "Err on the side of including variables whose status regarding causal impact on crash risk is unclear."

ESTABLISH CAUSAL RELATIONSHIP: HILL'S CRITERIA

- Strength
- Temporal relationship
- Consistency*
- Theoretical plausibility*
- Coherence*
- Specificity
- Dose-response relationship
- Experimental evidence*
- Analogy
- * Elimination of alternative explanations
- * Multiple studies/sources


STATISTICAL METHODS

- Depending on corresponding study design
- Generalized linear models: Poisson/Negative Binomial, logistics regression
- Correlation among observation is critical, especially for high fidelity data with multiple observations from same driver/fleet.

- Statistical power
 - Low exposure and sample size for long trips (e.g., exposure on driving over 11th hour)
 - Type I and Type II error: alternative hypothesis difficult to define
 - Statistical significance vs. clinically meaningful difference

RECURRENT EVENT MODEL FOR DRIVING PERFORMANCE USING NDS DATA

Figure: The estimated intensity functions (in solid line), $\hat{\lambda}(t|sleep = 0)$ and $\hat{\lambda}(t|sleep = 1)$, with 95% pointwise confidence intervals (in shaded area).

BUILD TRANSPORTATION STATISTICS COMMUNITY

- RECOMMENDATION 9: The Federal Motor Carrier Safety Administration should make greater use of independent peer review in crafting requests for proposals, assisting in decisions regarding awards, and monitoring the progress of projects (including in the study design and analysis stages). Peer review should include expertise from all relevant fields, including epidemiology and statistics—especially causal inference—to address appropriate design and analysis methods.
- The first Transportation Statistics Summer Workshop to be held at the Statistical and Applied Mathematical Sciences Institute August, 2017
- The Transportation Statistics Interest Group of American Statistical Association is filing a Petition be become a section.

