Toward a Common Metric for Risk Assessment across Diverse Factors in Fatigue Risk Management Systems: Quantifying Human Performance in Terms of Signal-to-Noise Ratio

Hans P.A. Van Dongen, Ph.D.

Director, Sleep and Performance Research Center Professor, Elson S. Floyd College of Medicine Washington State University Spokane

A Typical Problem in Fatigue Risk Management: Assessing the System-Wide Risk from Fatigue in Coupled Physical and Cyber Infrastructures in 24/7 Operations with Humans in the Loop

A Key Aspect of Fatigue Risk from Sleep-Deprived Humans in the Loop: Instability in Sustained Attention

Doran SM, Van Dongen HPA, Dinges DF. Arch Ital Biol 2001; 139: 253–267. Satterfield BC, Van Dongen HPA. Fatigue Biomed Health Behav 2013; 1: 118–136.

2017-03-21

Diffusion Decision Model

Ratcliff R, Van Dongen HPA. Psychon Bull Rev, 2009; 16(4): 742–751. Ratcliff R, Van Dongen HPA. PNAS, 2011; 108: 11285–11290.

A Diffusion Decision Model-Based Metric of the Fidelity of Information Processing: PVT Signal to Noise Ratio (SNR)

$$SNR \approx \frac{N\left(\sum_{i=1}^{N} w_i S_i\right)^2}{\sum_{i=1}^{N} \left[w_i \left(S_i \sum_{i=1}^{N} w_i - \sum_{i=1}^{N} w_i S_i\right)^2\right]} + 1$$

 $S_i = 1 / (RT_i - C), w_i = 1 / (r^2 S_i + 1), C = 100 \text{ ms}, r^2 = 196 \text{ ms}, RT_i \text{ is the } i\text{th response time (in ms), and } N \text{ is the number of PVT stimuli}$

Chavali VP, Riedy SM, Van Dongen HPA. Sleep, 2017, in press.

Impact of Sleep Deprivation on PVT SNR in Laboratory Studies

Chavali VP, Riedy SM, Van Dongen HPA. Sleep, 2017, in press.

Impact of Sleep Deprivation on PVT SNR in Laboratory Studies

Chavali VP, Riedy SM, Van Dongen HPA. Sleep, 2017, in press.

A Baseline-Invariant Version of the PVT SNR Metric

Chavali VP, Riedy SM, Van Dongen HPA. Sleep, 2017, in press.

Conclusions

- The LSNR metric for the PVT quantifies the fidelity of information processing
- LSNR has high sensitivity to fatigue, high degree of statistical normality, and absence of floor and ceiling effects
- A given change in LSNR always has the same meaning regardless of absolute values a reduction in LSNR of 3 units (i.e., a –3 dB change) represents a 50% drop in the fidelity of information regardless of the starting point
- The SNR baseline value may therefore be freely chosen to anchor the metric (0 dB point), which is helpful for mathematical models of fatigue
- LSNR provides a basis for calculations of the overall reliability of partially automated operational systems with sleep-deprived humans in the loop
- As such, LSNR may be a useful tool for systems-integrated fatigue risk management

Acknowledgments

Research supported by:

Office of Naval Research Air Force Office of Scientific Research Army Medical Research and Materiel Command National Institutes of Health NASA Headquarters Department of Defense **US Naval Medical Logistics Command** Naval Postgraduate School **US Army Research Office** Department of Transportation Federal Motor Carrier Safety Administration Federal Aviation Administration Transportation Research Board **Regional Airline Association** FedEx Express **Pulsar Informatics** Institutes for Behavior Resources State of Washington