

How much is left in your "sleep tank"? A simple model for sleep history feedback

Dorrian J, Hursh S, Waggoner L, Gupta C, Grant C, Pajcin M, Coates A, Kennaway D, Heilbronn L, Della Vedova C, Banks S

INSTITUTES FOR BEHAVIOR RESOURCES, INC. shaping a better world

Should I drive? Am I fit for work?

- Sleepiness is often used as an indicator of impairment, and in many circumstances, it tracks performance measures

- Measuring sleepiness is not necessarily measuring awareness of risk

Should I drive? Am I fit for work?

- Performance ratings often track sleepiness more closely than they track performance

- What else can we use in addition to sleepiness?

Sleep history feedback may help with fatigue-related decision making

SA Ambulance Service

$\underset{\substack{\text { sa } \\ \text { Ambulance } \\ \text { Service }}}{\substack{\text { and }}}$
Fatigue Score Calculator

Sleep Last 24 hours:	5 hours
Sleep Previous 24 hours:	5 hours
Sleep Last 48 hours:	$10: 00$ hours
Last awoke at:	$23: 00$ yesterday
Hours awake:	$2: 00$ hours
Fatigue score at:	Recalculate

Score 1-4: Keep an eye on yourself.
Score 5-8: Look out for each other.
Score 9+ : Notify State Duty Manager to discuss options.

- People also need to project into the future - Towards the end of my shift, will I still be fit for work, or for my commute?
- Can we develop a simple model to transform sleep history to support fatigue-related decision-making and forward planning?

Technology-supported methods for sleep recording are everywhere

"Despite a paucity of clinical validation with traditional sleep technologies (e.g., polysomnography (PSG), multiple sleep latency testing (MSLT), and clinical-grade actigraphy), CSTs are here to stay because of their innovative nature, convenience, and affordability." p. 1455

"Sleep Tank" is refilled by sleep, and depletes during wake

- Tank size = sleep-fuel required to remain awake for 4 days
- Required inputs are sleep period time and efficiency (provided by wearables)
- The model focuses on the sleep process
 of the two-process model - does not include a circadian factor

Initial validation: Laboratory-based simulated shiftwork study (n=10)

1. Extremely alert

KSS
2. Very alert
3. Alert
4. Rather alert
5. Neither alert nor sleepy
6. Some signs of sleepiness
7. Sleepy, but no effort to keep awake
8. Sleepy, but some effort to keep awake
9. Very sleepy, great effort to keep awake, fighting sleep

- Lapses (>500msec)
- Sleepiness Rating
- \%Time in Safe Zone (within 10km/h of the speed limit and within 0.8 m of the centre of the lane)
- PSG during sleep periods

Initial validation: Laboratory-based simulated shiftwork study ($n=10$)

$$
\begin{array}{lll}
\hline P=10-m i n ~ P V T ~ & K & =K S S \\
\end{array}
$$

23.6h "in the tank" 12.2h "in the tank"

Every 5\% reduction in the tank resulted in an increase of one lapse

Every 5\% reduction in the tank resulted in an increase of one point on the KSS

Discussion

- Initial support for "Sleep Tank" transformation tracking performance data during simulated night work
- Next steps include validation with actigraphy/wearables, rotating shift patterns in the lab and field
- Following further validation "Sleep Tank" calculations could be added to consumer-grade actigraphs and/or apps to map performance implications of recent sleep history, to aid fitness for work decisions at that moment, and across a coming shift

Left in tank: 2.4h
Latest advisable
sleep time: 5:45am

Discussion

- Continuous metric that can facilitate forecasting

Forecast

Date: 03/21/2017
Start: 3:00am
Finish: 3:45am
Latest advisable sleep time:

What if I napped here?
How long would I need to nap to be safe on my commute?

