Tenth International Conference on Managing Fatigue Abstract

Circadian rhythmicity and Risk Index validation in railway traffic control

Bart Roets (corresponding author)

Faculty of Economics and Business Administration, Ghent University, and Traffic Management & Services department, Infrabel, Brussels, Belgium. E-mail: bart.roets@ugent.be.

Johan Christiaens, Faculty of Economics and Business Administration, Ghent University, Ghent, Belgium. E-mail: johan.christiaens@ugent.be.

Problem

1 This paper describes the findings of a data-driven fatigue research project at Belgian 2 railway traffic control. First, we estimate the circadian rhythmicity in registered human 3 errors. Second, we statistically evaluate the validity of the Risk Index tool (Spencer et 4 al., 2006) through a multivariate Tobit regression analysis of its impact on these human 5 errors. The regression model also considers factors not taken into account by the Risk 6 Index methodology. As such, we extend and complement previous research on the validity 7 of the Risk Index by Greubel et al. (2010) and Greubel and Nachreiner (2013).

Method

8 In order to estimate the circadian rhythm in hourly error occurrence, and following 9 Folkard et al. (2006), we perform several cosinor regressions on human errors in rail-10 way traffic control. Error occurrence is corrected for exposure by taking into account 11 traffic volumes.

12 Next, a multivariate Tobit model empirically examines the relationship between the 13 exposure-corrected human errors and the Spencer et al. (2006) Risk Index scores. By 14 applying a Tobit regression, we account for zero values in error occurrence. The re-15 gression model additionally considers variables capturing industry-specific settings, age, 16 gender, part-time work and day-of-week (i.e., factors which are not taken into account 17 by the Risk Index methodology).

In close cooperation with railway experts from Infrabel, the state-owned company running the Belgian railway infrastructure, we analyze real-life data from 11 computerized Traffic Control Centers. We retrospectively analyze a unique full year dataset, containing more than 11,000 work shifts. The signalling and dispatching work in the Traffic Control Centers is standardized through non-overlapping 8-hour work shifts, starting at 06:00, 14:00 and 22:00 (i.e., early, late, and night shift). However, local management has the

authority to organize and adapt work shift patterns in functions of their needs (e.g. 24team composition, direction and speed of shift rotation, distribution of rest days). Work 25schedule risk is assessed for each individual traffic controller with actual staff schedules. 2627We complement the obtained Risk Index scores with intra-company data (e.g. traffic volumes, traffic controller age and gender). The dataset is further enriched with the 28human errors detected by the traffic control system (relatively frequent but non-critical 29task errors, such as erroneous ordering of signal commands). The human errors are not 30 identified at individual level, but at team level (i.e., the group of traffic controllers present 3132in the control center during the work shift). For the purpose of the Tobit regression, data is further aggregated by each 8-hour work shift. Data is collected, verified, and validated 33 34by a custom-developed Business Intelligence tool.

Results

The cosinor parameter estimates are all statistically significant, with an acrophase estimate (circadian peak) around 2 am. This estimate proves robust to alternative data aggregations (e.g. with errors calculated per shift instead of per hour, see Folkard et al., 2006).

The multivariate Tobit regression reveals a positive and highly significant effect of the 39 40 average team Risk Index on human error occurrence. Control variables reflecting operational conditions (such as the percentage of automatically commanded signals) are also 41 significant. There is no significant impact of average team age, gender (percentage of 42male traffic controllers) or part-time work (percentage in the team). Finally, day-of-week 43dummy variables exhibit varying parameter signs and significance levels. Tobit marginal 44 45effects indicate that, all other things being equal, the probability of making at least one error is highest on Saturdays (+6% compared to Mondays), and lowest on Tuesdays, 46Wednesdays and Thursdays. Regression results are robust to changes in model specifica-4748 tion.

Discussion

- 49 The estimated 24-hour rhythm, exhibiting an acrophase at 02:00 hours, is closely aligned 50 with previous research examining circadian employee performance (Folkard and Tucker,
- 51 2003, circadian low at 03:00) or the risk for accidents and injuries (Folkard et al., 2006,
- 52 acrophase around midnight).

53 Our Tobit regression result validates the Risk Index in a real-life setting, and therefore 54 extends previous web survey - based research on the validity of the Risk Index by Greubel 55 et al. (2010) and Greubel and Nachreiner (2013). Moreover, following a suggestion by 56 Greubel and Nachreiner (2013), we analyzed a potential 'day-of-week' effect and found a 57 significant impact on the exposure-corrected error levels.

- Also, in line with the recommendation by Dawson et al. (in press) to apply biomathemat-
- 59 ical models in a 'post-implementation surveillance mode', our custom-developed Business

60 Intelligence tool allows for a further (non-statistical but operationally intuitive) probing 61 of the data by railway experts.

Summary

The present study is part of an ongoing fatigue risk research project, performed in close collaboration with the Belgian railway infrastructure company Infrabel. Applying cosinor rhythmometry and Tobit regressions, our analysis not only estimates circadian rhythmicity in human error, but also validates the Risk Index Spencer et al. (2006) under real-world circumstances. As suggested by our regression results, an enhancement of the Risk Index to account for 'day-of-week' effects could further reinforce the accuracy of the tool. Finally, our research also aims to bridge the gap between theory and practice, by deploying a Business Intelligence tool for ex-post Risk Index analysis.

References

- Dawson, D., Darwent, D., Roach, G. D., in press. How should a bio-mathematical model be used within a fatigue risk management system to determine whether or not a working time arrangement is safe? Accident Analysis & Prevention.
- Folkard, S., Lombardi, D. A., Spencer, M. B., 2006. Estimating the circadian rhythm in the risk of occupational injuries and accidents. Chronobiology international, 23(6), 1181-1192.
- Folkard, S. and Tucker, P., 2003. Shift work, safety and productivity. Occupational medicine, 53(2), 95-101.
- Greubel, J., Nachreiner, F., Dittmar, O., Wirtz, A., Schomann, C. ,2010. The validity of the fatigue and risk index for predicting impairments of health and safety under different shift schedules in the context of risk assessments. Chronobiology international, 27(5), 1149-1158.
- Greubel, J., Nachreiner, F., 2013. The validity of the risk index for comparing the accident risk associated with different work schedules. Accident Analysis & Prevention, 50, 1090-1095.
- Spencer, M., Robertson, K., Folkard, S., 2006. The development of a fatigue/risk index for shiftworkers. Health and Safety Executive Report no. 446, www.hse.gov.uk/research/rrhtm/rr446.htm.