PREPARING A SAFETY CASE FOR A FLIGHT CREW FRMS

Prof Philippa Gander, Sleep/Wake Research Centre

Collaborators: Captain Jim Mangie, Adrienne Phillips (Delta Air Lines) Dr Lora Wu, Margo van den Berg, A/Prof Leigh Signal (SWRC)

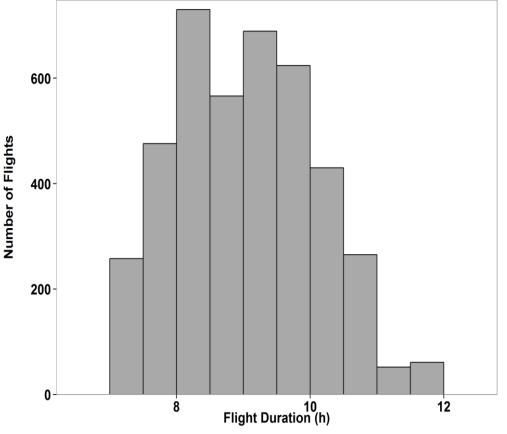
SLEEP/WAKE RESEARCH CENTRE MOE TIKA~MOE PAI

Outline: preparing a safety case

□ When and why

- How (example: in-flight rest allocation in 3-pilot operations)
 - Element 1: Scope
 - Element 2: Risk assessment
 - Element 3: Risk management
 - Element 4: Monitoring
- Conclusions

Element 1: Scope


- 1. Specify the part(s) of the prescriptive rules not met by operations covered by the safety case
- 2. Explain why an alternative means of compliance (AMOC) is needed.
- 3. Specify in detail the operation(s) to which the safety case applies

Prescriptive rule affected and why an AMOC is needed: in-flight rest allocation example

Need for an AMOC

- 3rd break not always the best sleep opportunity
 - depends on when break occurs in the circadian body clock cycle
- customary practice prior to 14CFR Part 117.17
 - PF usually takes the 2nd break (often between meal breaks)
 - Captain retains flexibility to alter break allocation on the day
- Delta mitigation to reduce workload of PF and PM
 - Relief pilot (RP) performs all ancillary and administrative duties from TOD also needs good rest opportunity
 - This limits reallocation of rest break time from RP to PF and PM
- Requested AMOC, PF can
 - take 2nd or 3rd break; and
 - be given at least $\frac{1}{3}$ of the available rest time, but not less than 1hr 45 min; and
 - begin rest period up to an hour earlier than the last half of the FDP

Duration of 4,151 flights potentially covered by the AMOC, April 2014

Descriptors

- city pair
- number of flights/month
- number of fleets servicing the flight
- maximum scheduled block time
- scheduled departure time (local time and UTC)

1,537 do not require augmentation

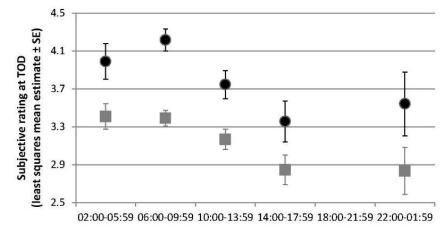
 Company policy – augment outbound and inbound flights between a city pair if one direction requires augmentation

Element 2: Risk Assessment

- 1. Review scientific literature
- 2. Estimate maximum time awake at TOD on shortest and longest flights
- 3. Compare in-flight sleep opportunities, AMOC vs 14CFR Part 117.17
- 4. Re-analyse two studies that predate 14CFR Part 117.17
 - confirmed that PFs rarely use the 3rd rest
 - 1st or 2nd preferred, depending on flight timing
- 5. Validation study

Factors affecting in-flight sleep

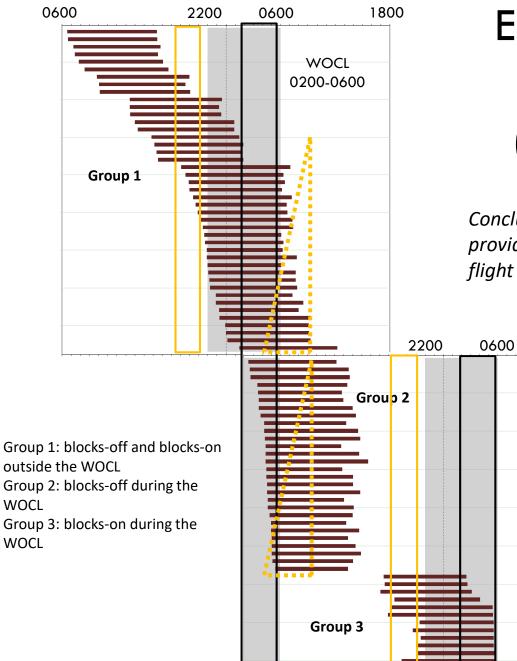
Bunk sleep is not as good as sleep at home


- Survey studies
- Polysomnography studies
 - not an effect of altitude (hypobaric chamber studies)

- Amount and quality of in-flight sleep (actigraphy) depends on
 - circadian body clock cycle
 - prior time awake
- Main factors affecting in-flight sleep (survey studies)
 - noise, turbulence, thoughts on one's mind

Factors affecting fatigue at TOD

- 4 studies (actigraphic sleep)
 - 237 crewmembers, 4-pilot crews, Class 1 rest facilities,730 out-and-back flights, 13 city pairs, 1-3 day layovers
- Every additional hour of in-flight sleep
 - □ sleepiness ♥ 0.3 points (KSS, 9-point scale)
 - fatigue ↓ 0.2 points (Samn-Perelli, 7-point scale)
- Every additional hour awake at TOD
 - sleepiness 1 0.2 points (KSS, 9-point scale)
 - fatigue 1 0.1 points (Samn-Perelli, 7-point scale)
- Time of landing (acclimated blocks on)
 - Sleepiness, fatigue, PVT response speed
 - worst 0200-1000


Domicile arrival time ● Sleepiness (KSS) ■ Fatigue (Samn-Perelli)

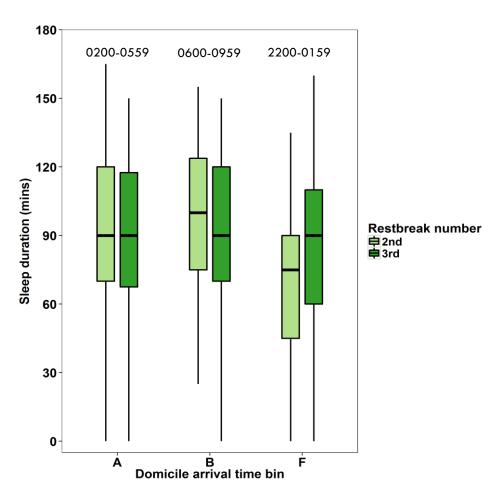
Maximum time awake at TOD

	Shortest flight	Longest flight
	Maximum scheduled	Maximum scheduled
	block time	block time
	7 hrs 2 mins	11 hrs 59 mins
Report time (blocks-off – 1hr)	18:13	18:06
Time awake at TOD (end break 1-20 min)	4 hrs 11 min	7 hrs 29 min
Time awake at TOD (end break 2-20 min)	2 hrs 30 min	4 hrs 9 min
Time awake at TOD (end break 3-20 min)	50 min	50 min
TOD (blocks-on-0.5 hr)	01:45	06:35
Off duty (blocks-on + 0.5 hr)	02:45	07:35

based on 4,151 scheduled flights, April 2014

assuming equal breaks and wake up 20 mins before break end

Estimating PF sleep opportunities (acclimated time)


Conclusion: the flexibility offered by the AMOC provides at least an equivalent opportunity for inflight sleep to the 14CFR Part 117 requirements

Validation study: design

Blocks-on in three 4-hour time bins:

- 0200-0549 (Bin A) highest fatigue at TOD (WOCL)
- O600-1059 (Bin B) high fatigue at TOD (cumulative fatigue across FDP)
- 2200-0159 (Bin F) in-flight sleep affected by the evening wake maintenance zone
- Required participants in each time bin
 - 80% power to detect a 1-point difference in Samn-Perelli fatigue ratings and Karolinska Sleepiness Scale ratings at TOD
 - 35 crewmembers who took 2nd break
 - 35 who took 3rd rest break
 - total = 210 crewmembers
- □ 1-page survey on outbound and inbound flights (1-day layovers)
 - blocks-on, blocks-off times, break times
 - sleep duration and quality if sleep attempted
 - fatigue and sleepiness ratings at TOD

Validation study: results

- PFs used 2nd break on 95% of flights
- PMs used 3rd break on 94% of flights
- Break duration: 2nd vs 3rd not significant
- Sleep duration: 2nd vs 3rd not significant
- For every 1-hr increase in flight duration, sleep duration increased by 12.3 mins

Conclusion: no evidence that the 3^{rd} break provided a better sleep opportunity than the 2^{nd} break

Benchmarking flights landing in Bins A and B versus compliant B777 4-pilot crews (Bin A, n=44; Bin B, n=96)

 KSS and SP ratings at TOD did not differ between 2nd versus 3rd rest break versus compliant 4-pilot crews

Conclusion: sleepiness and fatigue at TOD are comparable to compliant 4-pilot crews, 0200-1000

Element 3: risk management

Training

- All crewmembers have had training as required by AC 117-2
 - two 45-min basic courses
 - two 15-min refresher courses
 - paid to work through computer-based training outside of duty time
- Schedulers and others involved in management of the operations covered by the AMOC
 - 45-min fatigue management training session
 - why crewmember fatigue is a safety concern, physiology behind fatigue symptoms, role of scheduling in flight crew fatigue, purpose and processes of the Delta FRMS.

Mitigations

- 36.7% of flights covered by the AMOC can be flown with two pilots.
 - third pilot is an operational mitigation to reduce fatigue risk crewmembers can take in flight breaks and obtain sleep
- Relief Pilot performs all ancillary and administrative duties from TOD
 - reduces workload of PF and PM

Element 4: monitoring - fatigue reports

Crewmember responsibilities

- make management aware of the situation
- if appropriate, remove themselves from duty or refuse an assignment to duty
- requirements for calling in fatigued
 - call the Crew Scheduler, if it is prior to sign-in
 - call Crew Tracking, if is after sign-in
 - or call the Duty Pilot / Chief Pilot Support Centre
 - inform the Dispatcher (if applicable)
 - file an ASR report or alternatively an ASAP report, if they wish to have their report reviewed in a de-identified format
- **i** if fatigue is a flight safety concern, file an ASR or ASAP report
- **i** if fatigue is not a flight safety concern, file an ACR report

Fatigue reports

- Flight operations personnel responsibilities
 - Report fatigue hazards to appropriate supervisor or manager
- Pilot Fatigue Program Director and Fatigue Risk Management Team responsibilities
 - Acknowledge all fatigue reports
 - Carefully evaluate and discuss fatigue reports associated with the operations covered by the AMOC
 - Using FRM processes to act on fatigue reports when appropriate
 - Providing regular feedback to the pilot group

Conclusions

Safety cases to support a request for an AMOC need to be:

- explicit and detailed about the scope of AMOC
- well-supported by both scientific and operational data and analyses
- able to convince the regulator that the operator has adequately identified the risk associated with the AMOC and can manage it to a level of safety at least equivalent to that achieved by operating within Part 117 limits
- Regulator needs to be confident that the risk management and monitoring processes in the operator's FRMS are:
 - fully functional
 - sufficient to manage any risk associated with the AMOC
- Approach used in other successful safety cases
 - We are all still on a learning curve

Acknowledgements

- We are indebted to the flight crewmembers who participated with outstanding professionalism and attention to the details of the study protocol
- Work funded by Delta Air Lines