How Fatigue Increases Accident Risk: Evidence and Theories

Kimberly A. Honn, Ph.D.

Assistant Research Professor Sleep and Performance Research Center Elson S. Floyd College of Medicine Washington State University Spokane, WA, USA

Fatigue is complex

- Not a dichotomous state ("fatigue" vs "no fatigue")
- Unless asleep, fatigue is on a continuum with a range of severity
- Fatigue is a function of a variety of factors

Fatigue is a function of: Time since awakening (homeostatic sleep pressure) Sleep quality

Medical health status

Type of task/Workload

(Disordered sleep)

Time of day (circadian rhythm)

Drug use

Other variables...

Task duration (Time on task) Caffeine (Stimulant use)

Changing levels of fatigue

- Fatigue is widely accepted as a danger when driving
- Fatigue does not stay at a stable level
- Fatigue fluctuates
 - Day-to-day
 - By hour of the day
 - By task
 - By minute, second, or millisecond

Time

3/23/2017

3

Fatigue-related accidents

- Fatigue is widely accepted as a danger when driving
- Not always "asleep at the wheel"
- After an accident, difficult to work backwards and determine the cause
 - Biomathematical modeling
 - Fatigue prediction
 - Evidence of time awake, distraction
 - Likelihood of risk

Fatigue and attentional lapses

- Psychomotor vigilance test (PVT)
 - Serial reaction time (RT) task
 - Used in laboratory and field sleep research
 - Gold-standard measure of fatigue
 - Measures mean RT and number of lapses (RTs > 500ms)

A lapse does not *always* produce an accident

- Lapsing increases *risk* of accident
- Dependent on situational factors
 - Other traffic / pedestrians
 - Potential consequences
 - Double-checks and supervision

A lapse does not *always* produce an accident

- Lapsing increases *risk* of accident
- Dependent on situational factors
 - Other traffic / pedestrians
 - Potential consequences
 - Double-checks and supervision
- "Swiss Cheese Model of Accident Causation" – J. Reason

The Swiss Cheese Model of Accident Causation

3/23/2017

Dawson, Chapman, & Thomas (2012)

3/23/2017

Fatigue-related non-vigilance accidents

- Guantanamo Bay 1993 aviation accident
 - Flight crew had been on duty 18 hours, flying for 9 hours
 - Visual approach over the sea from the south to land on an easterly runway
 - Captain was looking for a lighthouse strobe light, which was not functioning
 - Failure to prevent the loss of airspeed and avoid a stall while in the steep bank turn
 - Failure to recover from the stall
 - Captain asked about strobe 7 times, even during warnings from crew members
 - No single, attentional lapse could account for these failures

Sleep loss causes feedback blunting

- Fatigue impairs cognitive flexibility
- Failure to adapt to sudden, unexpected changes in circumstances or information

Proposed conceptual framework

Modified from Honn, Salo, & Van Dongen (in press)

Perspectives on managing fatigue

Contact information

Kimberly A. Honn, Ph.D.

Sleep and Performance Research Center Washington State University Spokane

Phone: +1-509-358-7850 Fax: +1-509-358-7810 E-mail: kimberly.honn@wsu.edu

3/23/2017