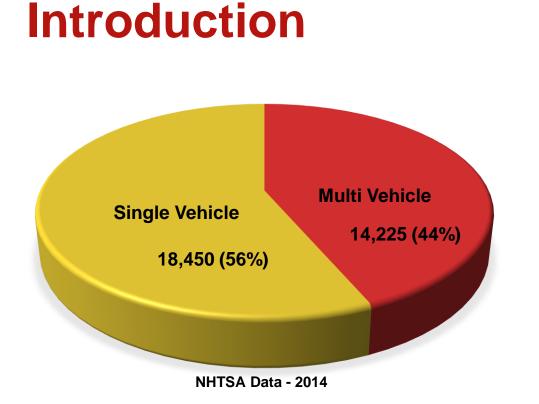

Examination of Factors Determining Fault in Multi-Vehicle Conflicts Using the SHRP2 Data

Raha Hamzeie, Ph.D. Student Peter Savolainen, Ph.D., PE

10th International Conference on Managing Fatigue March 23, 2017

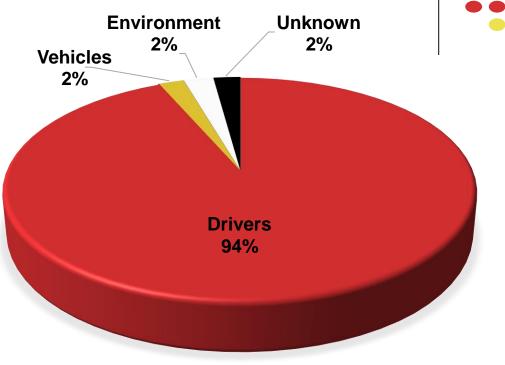


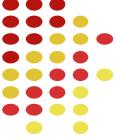


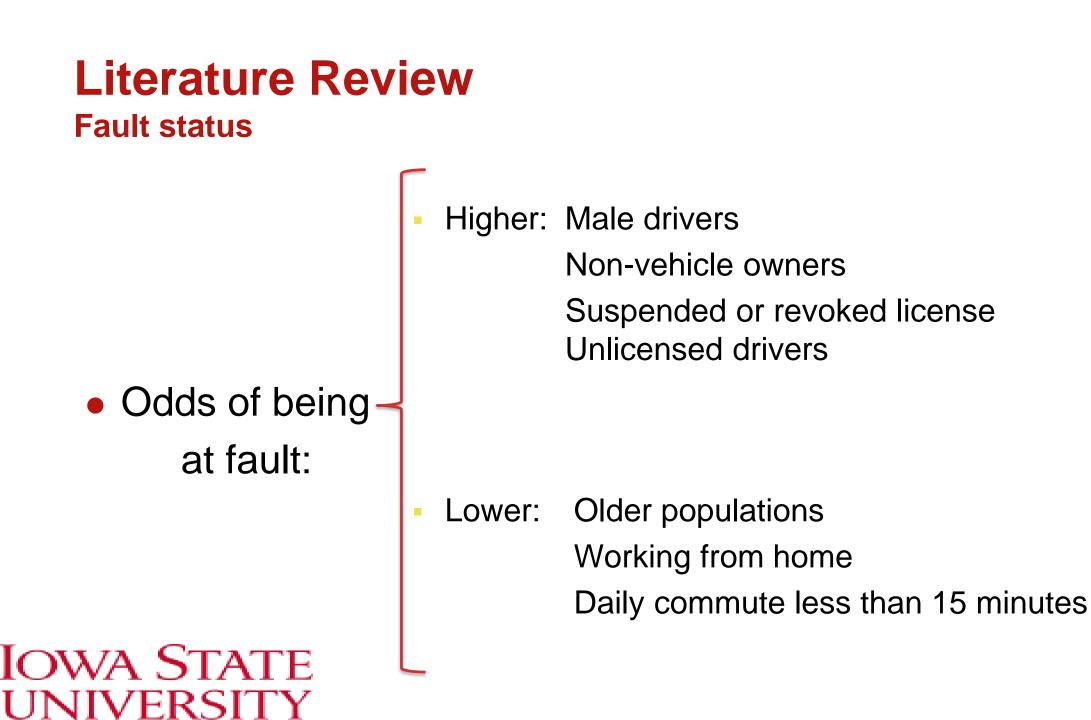
Overview

- Introduction
- Literature Review
- Data Description
- Statistical Methodology
- Results
- Limitations and Future Work

IOWA STATE UNIVERSITY




What factors influence the <u>likelihood</u> of a driver being <u>at fault</u> when involved in a <u>multi-vehicle</u> conflict?


IOWA STATE

UNIVERSIT

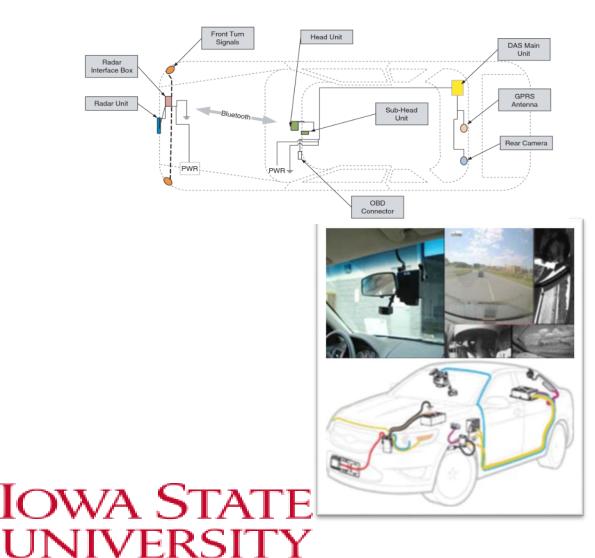
National Motor Vehicle Crash Causation Survey 2005-2007

Literature Review

Relationship of Traffic Safety and Driver Fatigue


- Philip et al.
 - 10% fatigue-related vs. 23% alcohol-related crashes
 - Fatigue crashes more fatal during daytime
 - Combined fatigue and alcohol OR = 8.6 for fatal / OR =2.6 for injury
- Connor et al.

IOWA STATE

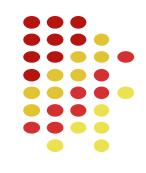

- Risk of injury:
 - OR=11 Score>=4 vs. Score=1
 - OR=8 Score>=4 vs. Score<4

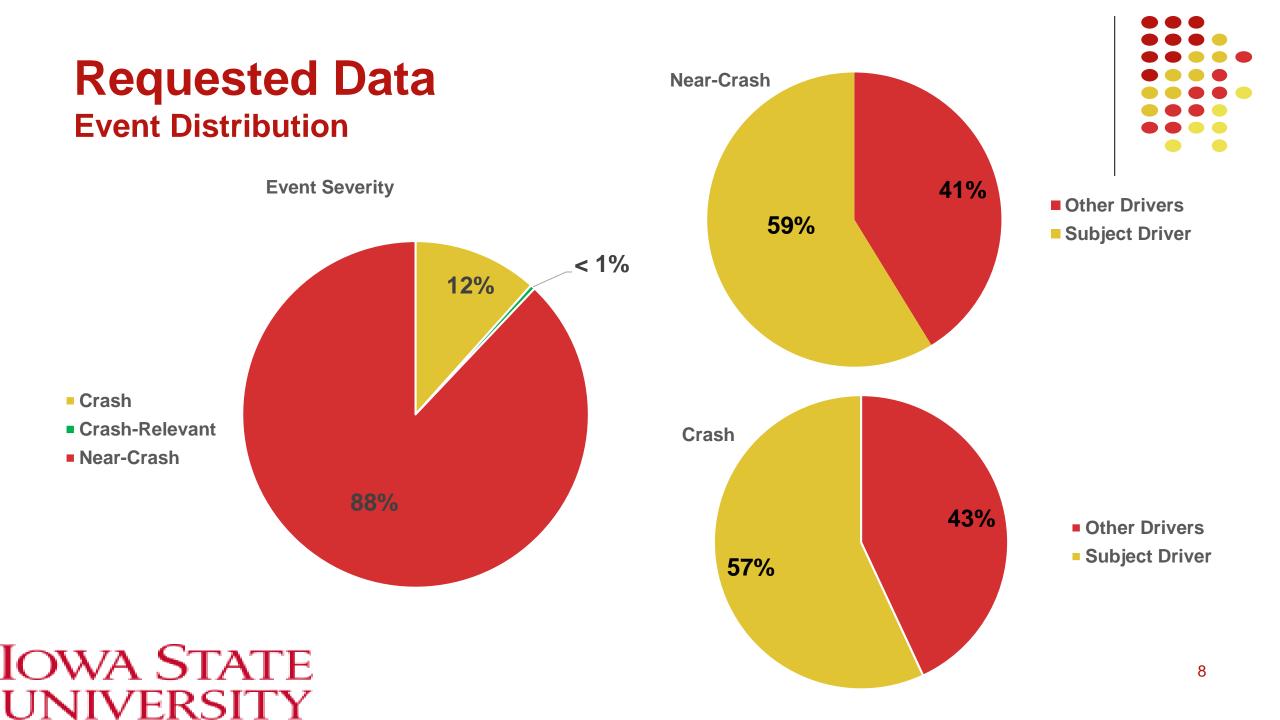
Stanford sleepiness scale

- 1. Felt active, wide awake
- 2. Was functioning at a high level but not at peak
- 3. Felt relaxed, awake but not fully alert, responsive
- 4. Felt a little foggy headed
- 5. Felt foggy headed, had difficulty staying awake, was beginning to lose track
- 6. Felt sleepy, would have preferred to lie down, woozy 7. Could not stay awake, sleep onset was imminent

Data SHRP 2 Naturalistic Driving Study

- 3092 drivers
- 3900 vehicle drivers
- 3 years of data
- 1600 crashes
- 2900 near-crashes


6


Requested Data

2, 384 multi-vehicle conflicts 1,177 unique drivers

- Driver behavior
- Driver demographic
- Driving history
- Driving knowledge
- Risk perception

- Risk takingSleep habits
- Event characteristics
- Trip information
- Vehicle information

Requested Data

Sleep Habits Questionnaire

How frequently do you use sleep aids in a typical month?

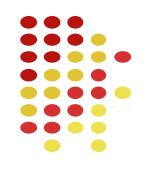
Iowa State

How likely are you to doze off or fall asleep while sitting and reading/watching TV/sitting inactive, in contrast to feeling just tired?

Have you been told that you snore?

Do you keep a fairly regular sleep schedule?

How often do you nap?


9

Requested Data

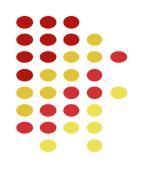
Summary Statistics

UNIVERSITY

Variable	Mean
At-Fault Subject Driver (Yes/No)	0.58
Full Time Worker (Yes/No)	0.41
College or advanced degree (Yes/No)	0.43
No children at home (Yes/No)	0.77
Female (Yes/No)	0.51
Latino / Hispanic (Yes/No)	0.07
Sleeper type – Normal (Yes/No)	0.56
Tobacco use (Yes/No)	0.09
Driver never/intermittently uses sleep aids (Yes/No)	0.80
Driver reported no chance of dozing when reading (Yes/No)	0.18
Driver reported no chance of dozing when lying down (Yes/No)	0.09
Driver reported feeling fatigued nearly everyday (Yes/No)	0.15
Driver reported markedly/very delayed time to fall asleep (Yes/No)	0.17
Driver reported no problem of awakenings after having fallen asleep	0.42
Driver reported intense/considerable sleepiness during awake time	0.07

Statistical Methodology

• Binary logistic regression model:


- Binary variable=1 if the subject driver is at fault,
- Binary variable=0 otherwise

$$log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_k x_{ki}$$

Mixed effect binary logistic regression model

$$p_i = \int \frac{EXP(\beta x_i + \varepsilon_i)}{1 + EXP(\beta x_i + \varepsilon_i)} f(\beta | \varphi) d\beta$$

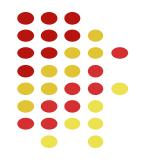
Results

Univariate Logistic Regression Models

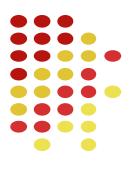
Variable	Coeff.	Std. Error	P-value	Odds Ratio
(Intercept)	0.443	0.065	<0.001	N/A
Driver characterized himself/herself as normal sleeper	-0.222	0.098	0.023	0.80
(Intercept)	0.485	0.091	<0.001	N/A
Driver never/intermittently uses sleep aids	-0.196	0.108	0.069	0.82
(Intercept)	0.390	0.054	<0.001	N/A
Driver reported no chance of dozing when reading	-0.239	0.126	0.058	0.79
(Intercept)	0.260	0.060	<0.001	N/A
Driver reported high chance of dozing when lying down	0.256	0.104	0.014	1.29
(Intercept)	0.310	0.053	<0.001	N/A
Driver feels fatigued nearly everyday	0.250	0.139	0.073	1.28
(Intercept)	0.297	0.053	<0.001	N/A
Driver reported markedly delayed time to fall asleep or never slept	0.299	0.132	0.024	1.35
(Intercept)	0.440	0.065	<0.001	N/A
Driver reported no problem with awakenings after having fallen asleep	-0.217	0.098	0.027	0.80
(Intercept)	0.323	0.051	<0.001	N/A
Driver reported intense/considerable sleepiness during awake times	0.310	0.187	0.098	1.36
IVERSITY				12

Results Multivariate Logistic Regression Model

Variable	Coeff.	Std. Error	P-value	Odds Ratio
Intercept	0.461	0.091	0.000	N/A
Driver reported high chance of dozing when lying down	0.241	0.104	0.021	1.27
Driver reported markedly/very delayed time to fall asleep or did not sleep at all	0.253	0.133	0.058	1.29
Male Driver	-0.223	0.098	0.023	0.80
Full Time Worker	-0.311	0.100	0.002	0.73


Conclusions

- Some sleep habits/patterns are associated with risk of being the at-fault driver in a conflict.
- Those who easily fall asleep, as well as those facing difficulties are more likely to be the at-fault driver in a conflict.
- There are correlations between different events of same individuals.
- There are associations between fault status and certain demographic attributes.



Limitations and Future Work

- No information was available for non-subject drivers.
- The questionnaire reflects general patterns of driver habits rather than the conditions at the time of conflict.
 - Use of face video data
- The source of reported sleep disorders/issues are not clear.
 - Develop more comprehensive datasets

Thank You!

rhamzeie@iastate.edu

pts@iastate.edu

