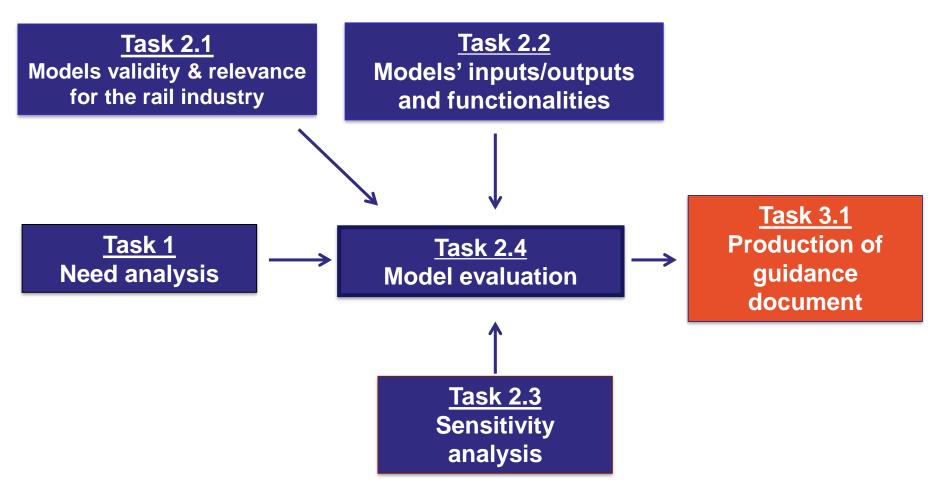
Preparing rail industry guidance on bio-mathematical fatigue models

10th International Conference on Managing Fatigue, San Diego

Viravanh SOMVANG Philippe CABON

20 March 2017



Scope & Objectives

- Update the **CASA report** for the GB rail industry
- Provide rail industry guidance on bio-mathematical fatigue models
 - Determine how the models compare in their assessment of fatigue from different roster patterns
 - Raise awareness of potential users on model usage and their limitations

Project overview – T1083

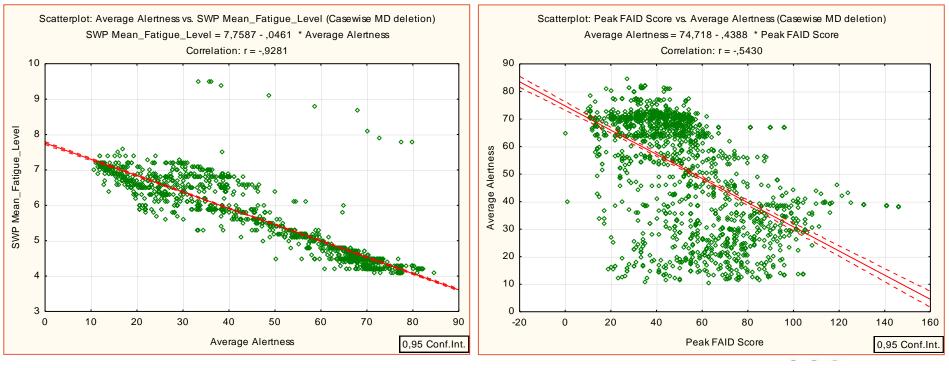
Selected biomathematical models

- Five biomathematical models have been selected for the study :
 - The Circadian Alertness Simulator (CAS);
 - The Fatigue Assessment Tool by InterDynamics (FAID);
 - The Fatigue and Risk Index (FRI);
 - The Sleep, Activity and Task Effectiveness Model and associated Fatigue Avoidance Scheduling Tool (SAFTE-FAST);
 - The Sleep Wake Predictor (SWP).

Methodology

Four analyses carried out

- 1) General correlation between the fatigue models
- 2) Analysis on fatigue factors
- 3) Individual parameters variations
- 4) Default thresholds


Data sample

- 45 rosters from 8 different rail companies
- At least over a period of three months

1) General correlation between the models

- Correlation analysis on global behaviours of the five models (N=2568)
- All models tend to evaluate fatigue in the same way, except for FAID and FRI which seem to evaluate fatigue slightly differently.

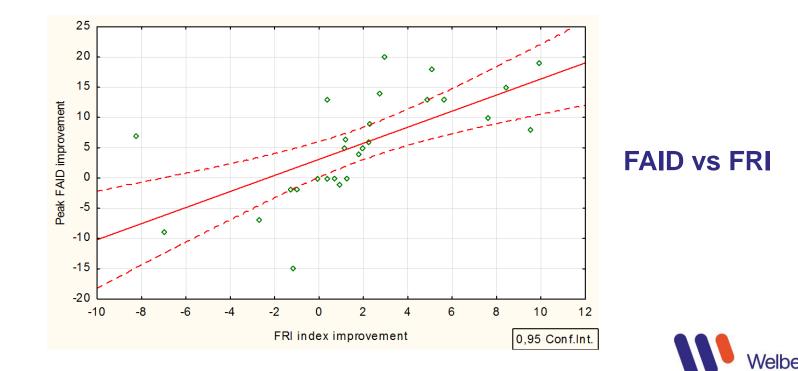
CAS vs SWP (r=-.93)

CAS vs FAID (r=-.54)

2. Analysis on fatigue factors

Objective

Analyze the sensitivity of the fatigue models **against specific fatigue factors**


6 categories of fatigue factors

- Time of day
- Duty length
- Recovery time
- Rest time between consecutive duties
- Cumulative fatigue
- Circadian phase shift

2. Analysis of fatigue factors

- Correlation analysis between the models on the fatigue factors
 - **High** correlation between **FRI and FAID** (r=.81)
 - Low correlations between the other models: SAFTE-FAST, SWP and CAS.

2. Analysis of fatigue factors

	CAS	FAID	Fatigue Index (FRI)	SAFTE- FAST	SWP
Time of day	\checkmark		\checkmark	\checkmark	\checkmark
Duty Length			\checkmark		
Recovery time		~	✓		
Daily rest interval		~	✓	✓	
Cumulative fatigue		~			
Circadian phase shift					~

3. Individual Parameters Variations

Objective

Analyse the sensitivity of the fatigue models regarding variations of individual parameters

- Three individual parameters
 - Habitual sleep need
 - Commute time
 - Chronotype
- Depending on the settings, the model output may vary greatly
 - SAFTE-FAST: good sensitivity to chronotype compared to other models
 - FRI: good sensitivity to commute time compared to other models

4. Threshold analysis

Objective

11

Compare the **default threshold** used by each model.

- Overall, **very few fatigue factors were actually detected** by the models based on their default thresholds.
- Percentage of agreement on critical duties between the fatigue models

	1 model	2 models	3 models	4 models
% of shifts where the models agree	54.3%	24.4%	15.2%	6.1%
	_			
		Only 6.1% of "critical" duties are detected as critical by all four models		

ees

Conclusion

- Overall, the five biomathematical fatigue models are **not sensitive to the same types of fatigue factors**
- The sensitivity of the models against individual settings differs from one model to another.
- The default thresholds provide **very variable results** depending on the models.
- No model clearly stands out as the overall best or worst.
- Development of **rail industry guidelines** on the use of biomathematical models based on the results of the research
- Guidance document and research report (T1083) available for download on : <u>http://www.sparkrail.org</u>

Contact

Viravanh Somvang

+33 (0)6 23 20 12 71

Philippe Cabon +33 (0)6 20 34 73 08 207 rue de Bercy 75012 Paris FRANCE

welbees.com

