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Problem - Sleep loss has reached epidemic proportions. It is estimated that 50-70 million Americans 8 

suffer from sleep disorders [1], and on average, we get 20% less sleep than a century ago [2]. Sleep 9 

deprivation results in increased drowsiness, fatigue, and cognitive deficits, which can have a negative 10 

impact on health, safety and performance [3], and even deadly consequences. Nearly 3% of crash 11 

fatalities in 2014 involved drowsy driving on US roadways [4], with more than 80,000 sleep-related 12 

crashes each year. Accordingly, development of reliable real-time systems to identify impaired vigilance is 13 

crucial for reducing the risk of fatigue-related accidents. 14 

Method - Here, we propose a novel approach to non-intrusively assess drowsiness based on 15 

characteristics of eye movements and blinking. The methodology is based on learning a Gaussian 16 

mixture model (GMM) [5] of the state of alertness and measuring the distance between the observed 17 

state and the reference model. Due to the variation within the alert state, i.e. existence of sub-clusters, a 18 

GMM estimator (with a flexible number of components) would be more intuitive. In this study, the reaction 19 

times to visual stimuli during a psychomotor vigilance task (PVT) [6] were used as the baseline. The 20 

experiment included 6 episodes of 10-min PVT, each consisting of 100 stimuli-response trials. 21 

Throughout the experiment, the subject was under surveillance using an infra-red-based eye tracking 22 

system continuously acquiring gaze and blink measurements. For each PVT stimulus, we considered 23 

a10-second window immediately preceding that stimulus and extracted a set of 25 features (Table 1) from 24 

the corresponding eye tracking data (i.e. 600 feature vectors per experiment). Each feature vector was 25 

then considered as an observation and linked to the reaction time to the corresponding stimulus. After 26 

splitting each subject's data into separate training and test sets, the training observations representing the 27 

alertness (based on the corresponding reaction times) were used to build the GMM for each subject. 28 

Moreover, dimensionality of the feature vector was reduced to 10 by Fisher's discriminant analysis after 29 

estimating a projection matrix using the training set. Finally, given an observation, the minimum 30 

Mahalanobis distance logarithm between that observation and centres of GMM components was 31 

computed as a raw index and then mapped into [-1,1], using a piece-wise-linear model with saturation, to 32 

calculate the drowsiness index.  33 

Table 1. List of the extracted features 
Gaze SD** in x- and y-coordinates Fixation duration Saccade duration Blinking duration 
Gaze median in x- and y-coordinates Fixation frequency Saccade frequency Blinking frequency 
Gaze scanpath in x- and y-coordinates Fixation time percentage Saccade time percentage Blinking time percentage 
Gaze velocity in x- and y-coordinates Fixation scanpath in x- and y-coordinates Saccade scanpath in x- and y-coordinates  
 Fixation velocity in x- and y-coordinates Saccade velocity in x- and y-coordinates  
** standard deviation 
 34 

Results - Eye tracking data was acquired using the GazePoint GP3 Eye Tracker from 15 participants 35 

(age 22.9±3.3 years; 11 female) at the Brain and Mind Sleep Research Laboratory, Western University, 36 

Canada. Each subject participated in two sessions with different sleep requirements: normal sleep (NS) 37 

and sleep restriction (SR) sessions, spaced at least 72 hours apart. During the night prior to NS session, 38 

the subject was required to have extended sleep for 9 hours (12-9am), while in case of SR session, the 39 

sleep was restricted to 5 hours (1:30-6:30am). The subject's compliance with these requirements was 40 

verified using a sleep log and actigraphy. 41 
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Figure 1. Drowsiness index and reaction time for a PVT episode from Subject 2 (SR session). (a) The raw index and reaction time, 
and (b) the drowsiness index and reaction time (mapped into [-1,1] using a piece-wise-linear model). 
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Figure 2.The normalized RMS error between the GMM-based drowsiness index and reaction time (after mapping) for all subjects 
together. The results are reported for the proposed method for both NS and SR sessions, in comparison to a random estimator. 

 43 

The method was evaluated on the data acquired from each subject in every session (NS or SR) using a 44 

leave-one-out cross-validation approach; i.e., choosing one PVT episode for validation each time and 45 

using the remaining episodes for training. For evaluation purpose, the corresponding reaction times were 46 

also mapped into [-1,1] using a piece-wise-linear model with saturation. The normalized root-mean-47 

square (RMS) error between the drowsiness index and the corresponding reaction time was then 48 

calculated to assess the performance. Furthermore, the performance of the proposed method was 49 

compared to a random estimator. Overall, the proposed method shows low normalized RMS errors for 50 

both NS and SR sessions, while outperforming the random estimator (Figures 1-2). Taken together, these 51 

results suggest a high correspondence between features extracted from eye tracking and reaction time 52 

during a sustained vigilance task (as discussed below). 53 

Discussion - As an example at the individual level, Figure 1 depicts the proposed GMM-based 54 

drowsiness index and the corresponding reaction times for a PVT episode in an SR session (Subject 2). 55 

According to the reaction time values (all greater than 475 ms), the subject can be considered drowsy for 56 

the whole episode. As shown in Figure 1(a), the raw drowsiness index correlates well with the reaction 57 
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time (r = 0.79, p<0.001), while the drowsiness index shows a small deviation (0.04 of RMS error) from the 58 

reaction time after mapping (Figure 1(b)). Figure 2 shows the overall performance of the proposed GMM-59 

based methodology for all subjects together (both NS and SR sessions) in comparison to a random 60 

estimator. As shown, the median normalized RMS error between the drowsiness index and reaction time 61 

is less than 0.2 for both sessions, suggesting high correspondence between the proposed index and the 62 

baseline. Moreover, the normalized RMS error for GMM-based method is significantly lower than the 63 

random estimator (p<0.001). On the other hand, the RMS error for the NS session is higher than SR 64 

(p<0.05), which is expected due to the sleep deprivation effect causing stronger discrimination between 65 

the alert and drowsiness states during the SR session. Results of this preliminary study verify the 66 

potential of the proposed methodology as a reliable approach for non-intrusive assessment of 67 

drowsiness, based on eye movements and blinking. Further investigations, under various levels of fatigue 68 

and time of day, will be required to assess the performance of this methodology. Since the reaction time 69 

can also be influenced by other factors such as distraction or disengagement, in future studies, we will 70 

also utilize biological measures, such as electroencephalogram (EEG) and electrocardiogram (ECG), to 71 

have a more reliable baseline for evaluation of the proposed methodology. 72 

Summary - Several methodologies for evaluating human vigilance and fatigue have been developed in 73 

the recent past, e.g. for drivers [7]. However, major limitations of these techniques are that they may 74 

detect sleepiness too late to effectively prevent fatigue-related accidents, may not be robust under 75 

various environmental conditions, can be poorly evaluated, and/or can be intrusive. Here, we present 76 

preliminary results for a non-intrusive drowsiness detection technique based on GMM of the alert state 77 

which relies on features extracted from eye movements and blinking. The proposed drowsiness index 78 

presents high correspondence with reaction times, recorded during a PVT experiment, as the baseline. 79 

Importantly, the proposed methodology significantly outperforms a random estimator. Ultimately, this 80 

research would lead to development of non-intrusive real-time techniques to reliably assess the state of 81 

vigilance, which is critical for managing fatigue in people and reducing motor vehicle collisions and human 82 

fatalities. 83 

References  84 

[1] M. Tjepkema, “Insomnia,” Heal. Rep., vol. 17, no. 1, pp. 9–25, 2005. 85 

[2] NCSDR (National Commission on Sleep Disorders Research), “Wake Up America: A National Sleep Alert. Volume II: 86 

Working Group Reports,” Washington, DC, 1994. 87 

[3] S. Banks and D. Dinges, “Behavioral and Physiological Consequences of Sleep Restriction,” J. Cinical Sleep Med., vol. 3, 88 

no. 5, pp. 519–528, 2007. 89 

[4] NHTSA (National Highway Traffic Safety Administration ), “Drowsy Driving.” [Online]. Available: 90 

https://www.nhtsa.gov/risky-driving/drowsy-driving. 91 

[5] C. M. Bishop, “Mixture Models and EM,” in Pattern Recognition and Machine Learning, Springer, 2006, pp. 423–460. 92 

[6] S. P. a Drummond, A. Bischoff-Grethe, D. F. Dinges, L. Ayalon, S. C. Mednick, and M. J. Meloy, “The Neural Basis of the 93 

Psychomotor Vigilance Task,” Sleep, vol. 28, no. 9, pp. 1059–1068, 2005. 94 

[7] Y. Dong, Z. Hu, K. Uchimura, and N. Murayama, “Driver Inattention Monitoring System for Intelligent Vehicles: A Review,” 95 

IEEE Trans. Intell. Transp. Syst., vol. 12, no. 2, pp. 596–614, Jun. 2011. 96 

 97 


