

The Impact of New Technology on Sleep Data Collection and Model Validation

Managing Fatigue 2017, San Diego March 20th

David Karlsson

■ JEPPESEN

Introduction

Increasing need for data collection

- Airline Industry (part of new regulations)
- Scientific Community

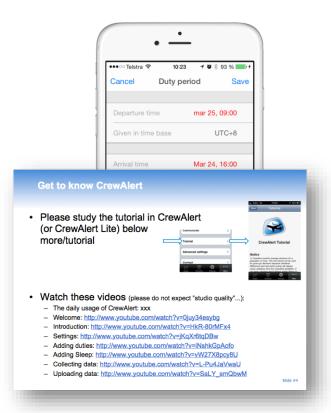
Airline crew data

- Airline crew are shift workers (but different)
- Pilots are generally early adopters

New technology can be used to:

- Improve the quality of collected data
- Decrease cost of each collected record
- Facilitate larger data collections

Traditional Data Collection Protocol

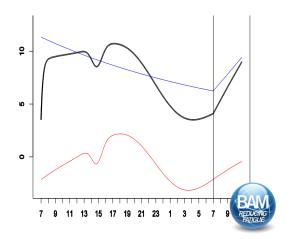


Potential for Improvement

Improved data quality

- Automated validation on data input
- Graphical representation allows user to catch errors in input
- Problems can be fixed by user before upload
- Improved scalability
- Decreased need for logistics
- E-training instead of classroom training
- All data gathered in one place

Study / Collected Data


Data collected using an iPhone app

- One part Crowd-sourcing
- One part in collaboration with airline

Study objectives

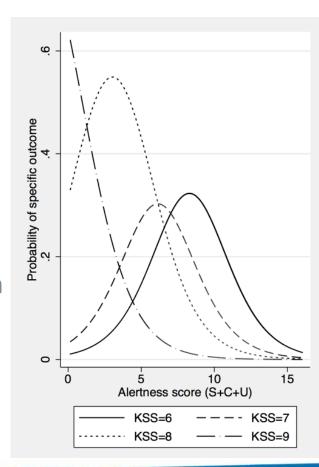
- Validate individual components of TPM/BAM
- Assess the feasibility of using predicted sleep
- Quantify the accuracy of the model

Data Analysis

More than 150 crew uploaded data

- Less than 3% of uploads discarded
- Main analysis contains only assessments in home-base time-zone
- Other assessments used only to estimate time-zone adjustment

About the data


- Collection executed at minimal cost
- Mainly volunteer participants

	Home base time zone
Subjects (n)	130
Age (mean years)	42
Age (sd years)	8
Gender (% males)	92%
Position	
Captain	50%
First Officer	42%
Cabin crew	4%
Other	5%
Diurnal type	
Extreme evening	2%
Evening	26%
Intermediate	44%
Morning	28%

Results

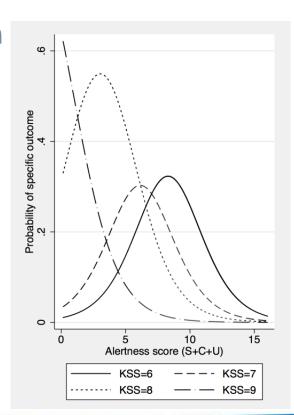
- Data analysis made at SRI
- Model components were validated
- Slightly new formulations
- Best fit reduces number of components
- Model extensions
- Probabilities of sleepiness by model prediction
- Predicting sleep reduces accuracy
- Still useful when observed sleep is missing

Future Work

Tool improvements

- Still a steep learning curve
- Extend data validation
- New data collections
- Analysis of crew behavior during long layovers
- Create a regular flow of collected data
- Keep improving the model with more data

Conclusions


Using new technologies for data collection

- Reduce amount of discarded data
- Improve quality of collected data
- 100% scalable

Model validation

- Validation of individual components
- Predict risk of sleepiness

For more information read the full paper at: journals.plos.org/plosone/article?id=10.1371/journal.pone.0108679

