Methods to Monitor Nighttime Visibility and Headlight Glare on the Road

Eric Dumont, Roland Brémond
LEPSiS, INRETS-LCPC, University of Paris-Est (France)

Kent B. Christianson, Daniel S. Greenhouse
VDL, School of Optometry, UC Berkeley (CA)

19th Biennial TRB Visibility Symposium
Blacksburg, VA, May 12-14 2009
Framework

- **French project**
 - Participant: Lighting & Visibility research Team at LCPC
 - Sponsor: MEEDDAT (French DOT), T.O. #05MT6039
 - Objective: develop a nighttime visibility index for secondary roads

- **California project**
 - Participant: Visual Detection Lab at UC Berkeley School of Optometry
 - Sponsor: Caltrans (California DOT), T.O. #6603
 - Objective: develop a glare meter tool to rate headlight glare

- **Collaborative project**
 - CalFrance partnership
 - Share knowledge and leverage existing projects
Introduction

- Problem statement: nighttime driving safety
 - Fact: accident risk is higher at night than in daytime
 - Cause: low visibility
 - Solution: headlamps provide visibility, but cause glare
 - Assessment: addressed by manufacturers of lighting systems
 - Need: tools for road managers to assess the quality of service of the road

- Objectives
 - Visibility meter tool
 - Glare meter tool
Outline

- Introduction
 - Framework
 - Objective

- Nighttime Visibility Meter Tool
 - Approach
 - Implementation
 - Sample results

- Headlight Glare Meter Tool
 - Approach
 - Implementation
 - Experiments

- Integration
Visibility: Approach

- **Objective**
 - Assess the level of visibility offered to drivers at night on secondary roads (devoid of road lighting)

- **Approach**
 - Based on STV approach for road lighting
 - Can the driver detect an obstacle in time to avoid collision?
Visibility: Standard Scenario

- **Driver**
 - Eye height: 1.2 m
 - Age: 25 y

- **Headlamps**
 - Photometry: high-beam [UMTRI-2001-19]
 - Mounting height: 0.65 m
 - Separation: 1 m
 - Distance from driver: 1.8 m

- **Target (obstacle)**
 - Shape: square
 - Size: 0.18 m
 - Luminance factor: 8% (dark)
Visibility: Measurement System

- **Pavement retroreflectivity**
 - ECODYN (mlpc®)
 - On-board system to monitor the visibility of the markings along the road
 - Geometry based on EN1436
 - Vision at 30 m ⇒ 1.25° lighting angle,
 2.29° observation angle.
 - Retro-reflected luminance coefficient
 - \(R_L = \frac{L}{E_\perp} \)
 - Range: from a few mcd.m\(^{-2}\).lx\(^{-1}\) up to 2k mcd.m\(^{-2}\).lx\(^{-1}\)
Visibility: Computational Model

- **Target luminance**
 - \(L = \frac{\rho}{\pi} \cdot E \approx \frac{\rho}{\pi} \cdot (\frac{I_{\text{left}}}{d^2} + \frac{I_{\text{right}}}{d^2}) \)

- **Pavement luminance**
 - \(L_b = R_L \cdot E_\perp = R_L \cdot (\frac{I_{\text{left}}}{d^2} + \frac{I_{\text{right}}}{d^2}) \)

- **Visibility level**
 - \(VL = \frac{L - L_b}{\Delta L_{\text{th}}} = \frac{\Delta L}{\Delta L_{\text{th}}} \)
 - \(\Delta L_{\text{th}} = f(\Delta L, L_b, \alpha) \cdot \Pi F_i(\ldots) \)
 - \(F_i \): correction factors (contrast polarity, age, time, detection probability)
 - [Adrian, 1989]
Visibility: Implementation

- At every point along the road
 1. Get RL value from ECODYN measurements
 2. Set headlamps at 250 m
 3. Compute VL
 4. While VL < field factor
 set headlamps closer and go to 3
 5. Interpolate visibility distance
 6. Compare with « safety distance »

Nighttime Visibility & Headlight Glare, Dumont et al
Visibility: Implementation

Nighttime Visibility & Headlight Glare, Dumont et al

$$R_L = 15 \text{ mcd.m}^{-2}.\text{lx}^{-1} \Rightarrow 56 \text{ m visibility distance}$$
Visibility: Sample Results

Dark colored pavement \Rightarrow better target visibility

Nighttime Visibility & Headlight Glare, Dumont et al
Visibility: Introducing Headlight Glare

- Modified scenario
 - Same driver, same car, same road
 - Opposing vehicle ⇒ everyone in low beam

- Modified computational model
 - Use CIE Glare Formula to compute disability glare equivalent veiling luminance L_v
 - Account for L_v when computing VL

Nighttime Visibility & Headlight Glare, Dumont et al
Visibility: Introducing Headlight Glare

\[\Delta L (\text{cd.m}^{-2}) \]

\[\text{Threshold } \Delta L (VL=1) \]

\[\text{Threshold } \Delta L (VL=7) \]

\[R_L = 15 \text{ mcd.m}^{-2} \text{.lx}^{-1} \Rightarrow 36 \text{ m visibility distance} \]
Visibility: Sample Results

Nighttime Visibility & Headlight Glare, Dumont et al
Outline

- Introduction
 - Framework
 - Objective

- Nighttime Visibility Meter Tool
 - Approach
 - Implementation
 - Sample results

- Headlight Glare Meter Tool
 - Approach
 - Implementation
 - Experiments

- Integration
Glare: Approach

- **Objective**
 - Assess the level of glare from opposing vehicles in a variety of situations

- **Approach**
 - Capture the luminance distribution of the nighttime driving scene
 - Analyse image to locate glare sources and compute glare level
Glare: Measurement System

- Road scene luminance
 - CCD Photometer (Radiant Imaging PM-1613F-1)
 - 1020x1020 16-bit XYZ image
 - Optics \Rightarrow 2.28’ per pixel
Glare: Discomfort Glare

- **Glare Index**
 \[GI = \sum_{\text{sources}} L^a \cdot \Omega^b / L_b^c / \theta^d \]
 - \(L \): source luminance
 - \(\Omega \): solid angle subtended by the source
 - \(\theta \): eccentricity
 - \(L_b \): background luminance
 - \(a, b, c, d \): model parameters

- **Conversion to Glare Mark on De Boer scale**
 \[GI = K \cdot 10^{-GM/4} \]
 - \(K \): model parameter
 [Vos, 2003]
Glare: Implementation

- Set model parameters
 - Method 1: use values proposed by Vos
 - Method 2: fit values with experimental data

- Find sources and get L, θ and Ω
 from captured image
 - Method 1: brute force segmentation
 - Method 2: conspicuity-based segmentation
Glare: Lab Experiment

- **Modalities**
 - 3 types of road scenes (urban, residential, rural)
 - 3 glare source eccentricity values
 - 3 glare source intensity values

- **Subjects**
 - 16 observers

Nighttime Visibility & Headlight Glare, Dumont et al
Glare: Lab Experiment

Observed [blue] vs Predicted [pink] for Method 1

RMS for Method 1: 0.27
RMS for Method 2: 0.77
Glare: Field Test

<table>
<thead>
<tr>
<th>Scenario</th>
<th>glare source</th>
<th>mainline lighting</th>
<th>glare screen</th>
<th>windshield</th>
<th>De Boer ratings, two observers</th>
<th>De Boer rating predicted by Glare Meter Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>lo-beam</td>
<td>on</td>
<td>no</td>
<td>clean</td>
<td>5, 6</td>
<td>6.2</td>
</tr>
<tr>
<td>#2</td>
<td>hi-beam</td>
<td>on</td>
<td>no</td>
<td>clean</td>
<td>3, 3</td>
<td>3.4</td>
</tr>
<tr>
<td>#3</td>
<td>hi-beam</td>
<td>on</td>
<td>yes</td>
<td>clean</td>
<td>4 ½, 5</td>
<td>5.9</td>
</tr>
<tr>
<td>#4</td>
<td>lo-beam</td>
<td>off</td>
<td>no</td>
<td>clean</td>
<td>5, 6</td>
<td>6.2</td>
</tr>
<tr>
<td>#5</td>
<td>hi-beam</td>
<td>off</td>
<td>no</td>
<td>clean</td>
<td>2 ½, 3</td>
<td>3.4</td>
</tr>
<tr>
<td>#6</td>
<td>hi-beam</td>
<td>off</td>
<td>no</td>
<td>dirty</td>
<td>2, 2</td>
<td>3.3</td>
</tr>
</tbody>
</table>
Glare: Disability Glare

- CIE Glare formula
 \[\frac{L_v}{E_g} = \frac{10}{\theta^3} + \frac{5}{\theta^2} \cdot [1 + \left(\frac{A}{62.5}\right)^4] \]

 - \(L_v\): equivalent veiling luminance
 - \(E_g\): eye illuminance from glare source
 - \(\theta\): source eccentricity
 - \(A\): age

- Implementation
 - Detect glare source pixels \(\Rightarrow\) \(L\) and \(\theta\)
 - For every glare pixels
 - Get \(E_g\) from \(L\)
 - Add up to \(L_v\)
Glare: Lab Experiment

- **Modalities**
 - Increment grey level of disc on black background, in grey surround, until disc just detectable
 - 3 source eccentricities
 - 3 source intensities + no glare source

- **Subjects**
 - 16 observers
Glare: Lab Experiment

Log L_v from subjects’ responses

Log L_p from luminance image

Nighttime Visibility & Headlight Glare, Dumont et al
Conclusions

- **Nighttime Visibility Meter Tool**
 - Easily deployed
 - Needs to be calibrated
 - Can be improved
 - Introduce road geometry (curves, slopes)
 - Chose better contrast definition
 - Account for adaptation

- **Headlight Glare Meter Tool**
 - Calibrated
 - Needs stationary conditions

- **Integration: complementary use of both tools**
 - Locate low visibility road sections with the Visibility Meter Tool
 - Deploy the Glare Meter Tool on these sections
Nighttime Visibility & Headlight Glare

Thank you for your attention.