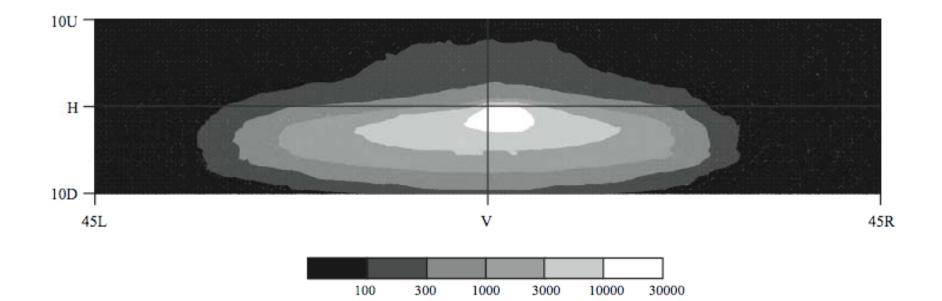
Pedestrian Crashes in Michigan: Daylight, Darkness, and Forward Vehicle Lighting

John M. Sullivan and Michael J. Flannagan

University of Michigan Transportation Research Institute

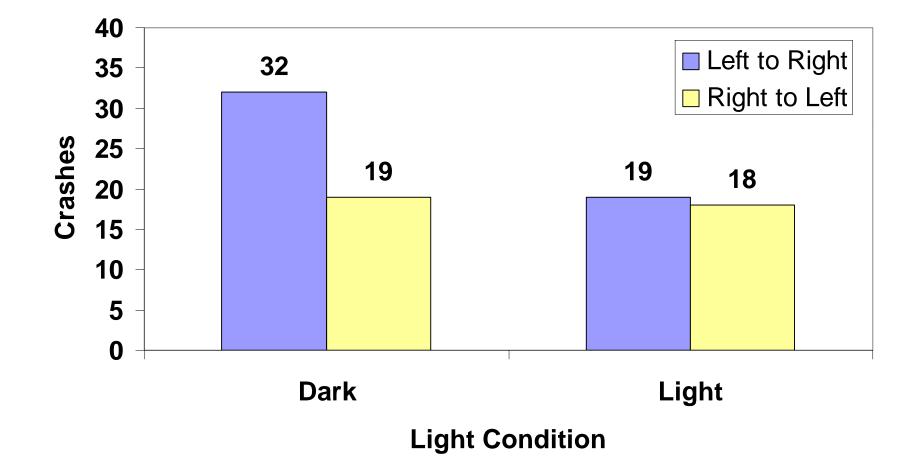
19th Biennial TRB Visibility Symposium May 12-14, 2009



Industry Affiliation Program for Human Factors in Transportation Safety

- Alps Automotive/Alpine Electronics
- Autoliv
- BMW
- Chrysler
- Com-Corp Industries
- Continental Automotive Systems
- Denso
- Federal-Mogul
- Ford
- GE
- General Motors
- Gentex
- Grote Industries
- Harley-Davidson
- Hella
- Hitachi America
- Honda
- Ichikoh Industries

- Koito Manufacturing
- Lang-Mekra North America
- Magna Donnelly
- Mitsubishi Motors
- Nissan
- North American Lighting
- OSRAM Sylvania
- Philips Lighting
- Renault
- SABIC Innovative Plastics
- Sisecam
- SL Corporation
- Stanley Electric
- Toyota Technical Center, USA
- Truck-Lite
- Valeo
- Visteon
- 3M Visibility and Insulation Solutions


Typical U.S. low-beam photometry

More light is distributed on right, less on left

UMTRI-2004-23

Crash risk of pedestrian crossing direction appears to be asymmetric in the dark

Presentation Overview

- Background:
 - Pedestrian crashes
 - Low-beam light distribution and use
 - Crash datasets
- Supplementing datasets with police reports
 - Recovering geometric information from crash diagrams
 - Recasting reports using vehicle-centric geometry
- Analysis of pedestrian crashes in Michigan
- Conclusions

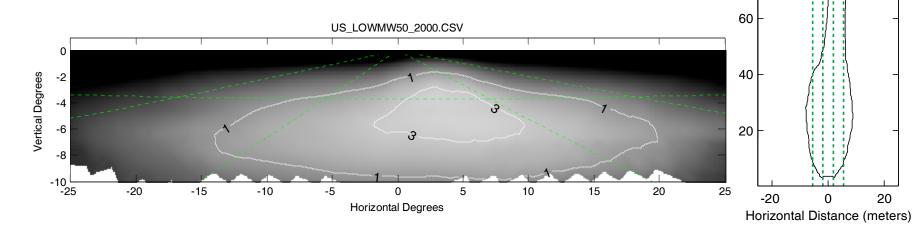
Background

- Pedestrians are the most important visibility concern associated with darkness.
 - Risk of a fatal pedestrian crash in darkness is 7 times that in daylight (UMTRI-2006-1)
- Developments in forward headlighting have made it possible to dynamically distribute light along the roadway where it is most needed.
- This raises a few questions:
 - Where should the light be directed?
 - What evidence exists that forward vehicle light distribution can affect pedestrian crash risk?

Facts About Forward Vehicles_LOWMW50_2000.CSV Lighting

160

140


120

100

80

-ongitudinal Distance (meters)

- Distribution of low beam light is biased to the right:
 - Avoids glare to oncoming drivers
 - Visibility / glare compromise
- High beams are seldom used by drivers even when no threat of glare is present (UMTRI-2003-03)

Is this bias apparent in the crash record?

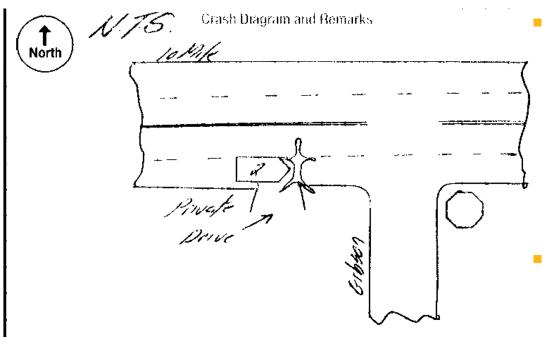
- Should mean that:
 - In darkness, pedestrians approaching from the left (driver side) of a vehicle may be less visible than those from approaching from the right
 - Compared to daylight risk
 - Assumes: pedestrian approach direction is independent of time-of-day, alcohol involvement, fatigue, demographics...
- Important because:
 - Allows more precise estimate of the influence of headlighting on crash risk
 - Relevant to adaptive forward lighting
 - More completely characterizes pedestrian-vehicle crash geometry
 - Relevant to other mitigation approaches

What is known?

- Kosmatka (2003) quantifies visibility in terms of approach direction and driver expectancy:
 - Left-to-right: 37 m
 - Right-to-left: 66 m
- In a sample of 76 nighttime pedestrian crash litigation cases,
 - 33% report approach from left
 - 17% report approach from right
- Not much else is known.

What is in the crash record?

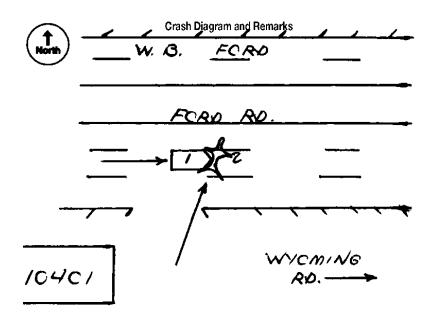
- Examined Michigan 2004 pedestrian crashes:
 - 75% of cases listed the pedestrian direction of travel as 'Unknown';
 - When known, movement direction is given by compass direction:


•	But,	vehicle-c	entric	coordinates	are more	desired:
---	------	-----------	--------	-------------	----------	----------

Vehicle Direction	Pedestrian Direction	Vehicle-Centric	
North	East	Driver Side	
South	West		
East	South		
West	North		
North	West	Pedestrian Side	
South	East		
East	North		
West	South		

What is in the crash record?

- Coding of vehicle direction is sometimes ambiguous:
 - E.g., A collision that occurs after a driver completes a turn may be identified as "turning" or "going straight"
- More information may be recovered from the crash diagrams and narratives in the crash report:
 - Diagrams often include arrows indicating travel direction of both vehicle and pedestrian
 - More complete description of crash event sequence


Example diagram:

- Text accompanying diagram:
 - Vehicle: Travelling eastbound on 10 mile.
 Driver stated pedestrian stepped out in front of vehicle, almost on purpose. Could not avoid collision. Stopped within 10 feet of impact.
 - Pedestrian: Refused verbal and written statement. Probably crossing to go home at [address].

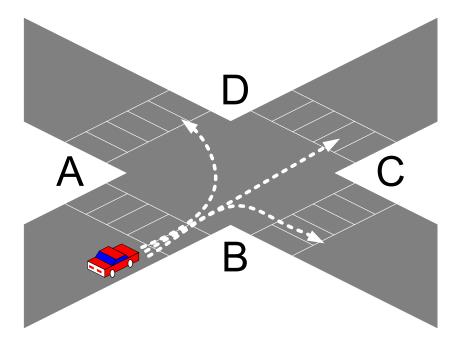
Pedestrian travel direction reported as UNKNOWN in dataset.

Example diagram

D.#1 STATED HE WAS E.B. CN FORD RD. WHEN THE PED. RAN RT. CUT IN FT. CF HIM & HE DIDN'T SEE HIM COMING.

PED. NO STATEMENT AT SCENE.

Pedestrian travel
direction is reported
as *unknown* in the
dataset, although
the arrow indicates
the direction of
travel.


Method

- Base set of pedestrian crashes selected from Michigan 2004 dataset (1,240 crashes):
 - One vehicle, one pedestrian
 - Prior vehicle maneuver likely causally connected to crash:
 - Excluded: backing, driverless crashes, stopped vehicle, pedestrian striking vehicle—driver vision unlikely related to crash
 - Exclude pedestrians under 18 years:
 - Exposure differences between dark/light and other factors could complicate analysis

Supplemental Crash Coding

- Supplemental crash description developed for subset of base:
 - 200 crashes in darkness
 - 200 crashes in daylight
- Intended vehicle maneuver:
 - Left turn, Right turn, Straight
- Vehicle-centric pedestrian crossing :
 - Non-Intersection: Left-to-Right, Right-to-Left
 - Intersection: 8 directions:

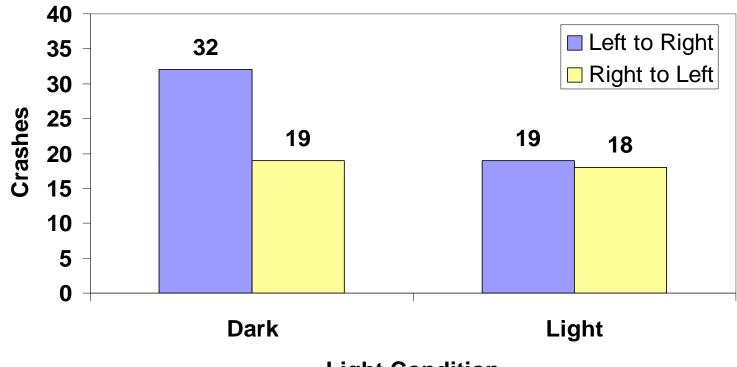
Pedestrian Crossing Intersections

- Parallel with vehicle:
 - A-D
 - D-A
 - B-C
 - C-B
- Perpendicular to vehicle:
 - D-C
 - C-D
 - A-B
 - B-A

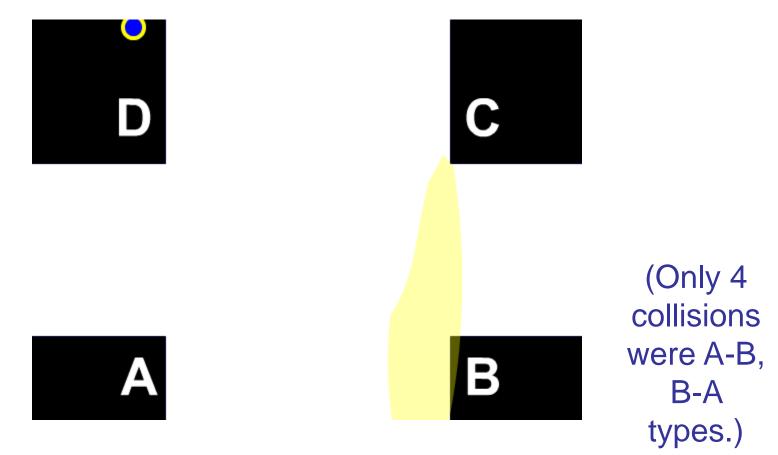
Analysis

- Compared relative distributions of crashes in darkness to daylight for pedestrian travel directions and vehicle maneuvers:
 - Interactions between light condition and travel direction would suggest a geometric bias associated with light condition.
 - Vehicle maneuvers:
 - Straight
 - Left turn
 - Right turn

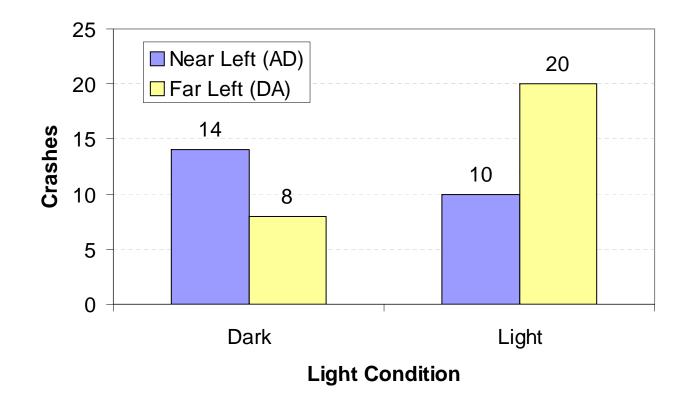
Results—Left to Right, Right to Left


 Pedestrian crossing direction when vehicles are going straight...

Results—Straight



Light Condition

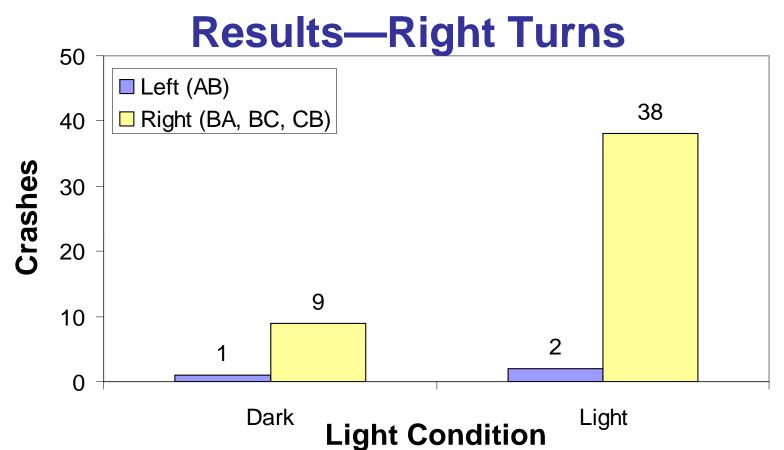

- There are more LtoR than RtoL crashes in the dark
- There are an even number of RtoL and LtoR crashes in the light
- $\chi^2 = 1.14 \ (p = 0.29);$

Results—Left Turns

 Pedestrian crossing direction when vehicles are turning left

Results

- More near-left than far-left in dark
- More far-left than near-left in light


Results—Right Turns

 Pedestrian crossing direction when vehicles are turning right:

- More right turn crashes in light
- No obvious direction bias associated with light condition
- Probably a traffic density/driver attention issue

Conclusions

- There is useful information in the diagrams and narratives contained in police reports
 - Recovery is difficult and depends on the specific research question (e.g., crash geometry)
- Nighttime pedestrian crash risk affected by pedestrian and vehicle movement dynamics.
 - Asymmetric light distribution in low beam results in crash asymmetries at night.
 - Dynamic distribution of light in a turning maneuver at night also affects risk pattern.

Thank you

