Update on Applying LEDs for Site and Roadway Lighting

Shirley Coyle, LC Ruud Lighting / BetaLED

TRB Visibility Symposium May 2009

The Potential of LED Lighting Versus Incumbent Technologies

- significant energy savings
- significant maintenance savings
- improved lumen maintenance

Advantages related to Solid State Technology

- High reliability, safety, durability
- Instant on, instant re-strike
- Loves cold temperatures
- Dim or switch easily
- No <u>forward</u> heat; no UV
- Vibration and impact resistant (no electrodes)

The Green Factor – Environmental Opportunities

- No mercury
- No lead, RoHS compliance
- Longer lifetime less environmental waste
- Opportunities for better optical control
- High recycled content
- Energy savings

Sounds too good to be true...

Several critical issues in successfully applying LED technology in luminaires:

- Thermal design
- Optical design
- Determining life ratings
- Determining LLF (light loss factors)
- Comparing luminaires

Good technology ≠ Good product

Life

- IESNA: 30% Lumen Depreciation at end of life (L₇₀)
- What about system life? all components must be considered
- Need a finish that will last as long as the LEDs

Life depends on

- 1) the thermal design and drive current of the individual fixture and
 - 2) on the Ambient Temp of Your Application

(shown-Ruud Edge ™ Performance Curves)

Light Loss Factor -

There will not be a standard "one-size – fits-all" LLF for LED – it will vary with the individual product design!

Considerations:

- LLD (lamp lumen depreciation)
- LDD (luminaire dirt deprection)
- Ambient temperature factor
- Drive current factor
- Application life (point in time to design to)

Evaluating Product Design

- Thermals
- Optics
- Performance do the layout
 - photometrics (independent test files)
 - LPW (lumens per watt)
- Life: L₇₀
- Proven installations?

LEDs and Roadway Lighting

- Important to meet RP-8, AASHTO or TAC as required (do the lighting layouts)
- Current performance LED products are most feasible now for residential or collector roads (dollars per lumen)
- No lumen multipliers

Finding the optimum solution

100W HPS Flat Glass Standard Cobra Head Luminaire

0.4	0.2	0.2	0.3	0.4	0.4	0.4	0.3	0.2	0.4
0.5	0.3	0.3	0.4	0.5	0.5	0.5	0.5	0.4	0.5
0.7	0.4	0.5	0.7	0.7	0.7	0.6	0.6	0.7	0.8
0.8	0.5	0.6	1.0	1.1	1.0	0.8	0.7	0.7	1.0

Luminance Grid - Contact RuudLED™ for Illuminance Values

	Average Luminance	Avg/Min	Max/Min	Veiling Luminance Ratio
100 HPS Cobra Head (shown above)	0.56	2.80	5.50	0.25
IES RP-8 (Local, Medium, R3)	≥ 0.5	≤ 6.0	≤ 10.0	≤ 0.4

Initial Lumens: 9,500

LLF: .80

Mounting Height: 27'

Spacing: 120' Arm Length: 6' Setback: 3'

Roadway Width: 25' Lamp Life: 24,000 hours

115 SYSTEM WATTS

One possible solution

40 LED LEDway™ XSL02034B*U

Luminance Grid - Contact RuudLED™ for Illuminance Values

	Average Luminance	Avg/Min	Max/Min	Veiling Luminance Ratio
40 LED LEDway™ (shown above)	0.53	2.65	6.0	0.27
IES RP-8 (Local, Medium, R3)	≥ 0.5	≤ 6.0	≤ 10.0	≤ 0.4

Initial Lumens: 4,140

LLF: .86

Mounting Height: 27'

Spacing: 120' Arm Length: 6' Setback: 3'

Roadway Width: 25'

System Life: 121,000 hours L₇₀

27% energy savings 97,000 additional lamp hours 4 relampings saved

3 possible solutions vs 100W HPS

IES RP-8 (Local, Medium, R3)	≥ 0.5	≤ 6.0	≤ 10.0	≤ 0.4
---------------------------------	-------	-------	--------	-------

LEDway™ Models That Meet IES RP-8 as Outlined Above

	Model	Initial Lumens	System Wattage	First Cost	System Life - L ₇₀
30 LED LEDway™ at 700mA	XSL02025B*UD	3,705	82W	\$	64,000
40 LED LEDway™ at 525mA	XSL02034B*U	4,140	84W	\$\$	121,000
50 LED LEDway™ at 350mA	XSL02042B*UH	4,000	66W	\$\$\$	> 150,000

Oakland Streetlight Study - Phase III

City of Oakland – Per Head Power Consumption

Fixture	HPS	LED-Phase II	LED-Phase III
Power (W)	121W	78W	58W
Savings	_	43W	63W
% Reduction	_	36%	52%

Pacific Gas and Electric Company

Emerging Technologies Program

Application Assessment Report #0727

LED Street Lighting San Francisco, CA

Issued: December 2008

Project Manager: Mary Matteson Bryan, P.E.

Pacific Gas and Electric Company

Prepared By: Tyson Cook, Project Manager

Jordan Shackelford, Project Manager

Terrance Pang, Director

Energy Solutions 1610 Harrison St. Oakland, CA 94612 (510) 482-4420

Table VI: Summary of Computer Modeled Photopic Lighting Performance Results at 150' Spacing

Luminaire	Grid Points	Average Illumination (All Modeled Points, footcandles)	Coefficient Of Variation	Average-to-Minimum Uniformity (All Modeled Points)
HPS	100%	0.63	0.87	9:1
LED A	99%	0.30	0.71	6:1
LED B	72%	0.34	1.31	165 : 1
LED C	100%	0.15	0.62	2:1
LED D	79%	0.35	1.07	22:1

Lighting Performance Metrics

Table I: Average Luminaire Power and Estimated Savings

Luminaire Type	Power (W)	Power Savings (W)	Estimated Annual Energy Savings (4100 hr/yr, kWh)	Energy Cost Savings
HPS Type II cut-off	138.32	-	-	_
LED A	58.66	79.66 (57.6%)	321	\$30.20
LED B	62.22	76.10 (55.0%)	342	\$28.45
LED C	41.25	97.07 (70.2%)	398	\$38.77
LED D	69.21	69.11 (50.0%)	283	\$25.01

Energy Metrics

Adaptive Controls— "smart" fixtures

Triggers for Considering LED

- Long hours of operation (24/7)
- Long periods of inactivity in space
- Hard-to-maintain and high-vibration locations
- Low light level requirements, especially where uniformity is important
- Overlighted existing sites re-design to meet IES standards

Possible today, but there are barriers...

Barriers to LED for Site & Roadway

- For designers, lack of experience with LEDs, lack of knowledge of LEDs, and lack of confidence in LEDs
- Incomplete standards: LM-79, LM-80, and more coming (TM-21) what to use now?
- First cost of luminaires / payback
- Variability in luminaire design & performance – challenging to evaluate

Evaluating LED luminaires

- Photometrics (independent test data)
- Evaluation/Layout for the application
- Life: what is the L₇₀
- Economic Analysis
- Installations / Proven
- Warranty

The View Ahead: Potential for Improvements through using LED Technology

- Better Lumen Maintenance longer life
- Reduced Equipment Maintenance
- More use of Adaptive Controls
- Reduced Energy Use
- More effective target distribution of light
- Improved Vandal Resistance

Update on Applying LEDs for Site & Roadway Lighting

TRB Visibility Symposium May 2009

Shirley Coyle shirley.coyle@ruud.ca

