Development and Validation of a Luminance Camera

Jason E. Meyer, Ronald B. Gibbons, Christopher J. Edwards Virginia Tech Transportation Institute

Background

Luminance - amount of visible light leaving a point on a surface in a given direction

Background

- Static Photometers
 - PRO:
 - Capture luminance data for entire scene in image
 - Fan to decrease temp. → decrease image noise
 - CON:
 - Unable to capture dynamic data in rapid succession

Hand-held luminance meters

- PRO:
 - Capture luminance data for specific points of interest
- CON:
 - Time-consuming for multiple points of interest
 - Unable to conduct future analysis since no image is recorded

💽 🔳 | 1:1 🔄 🔍 🔍 | Detecto

Goals

- 1. Calibrate a digital video camera to a photometer
 - Develop rapid method of image capture for calibration
- 2. Develop working system for dynamic video capture
 - Determine optimal manual camera settings or allow automatic, camera-determined settings
- 3. Determine the level of repeatability and reproducibility (R&R) of the working system
- 4. Compare results of the working system in a dynamic environment

Goals

- 1. Calibrate a digital video camera to a photometer
 - Develop rapid method of image capture for calibration
- 2. Develop working system for dynamic video capture
 - Determine optimal manual camera settings or allow automatic, camera-determined settings
- 3. Determine the level of repeatability and reproducibility (R&R) of the working system
- 4. Compare results of the working system in a dynamic environment

Calibration - Procedure

- Controlled environment
- Simultaneous image capture with ProMetric photometer and Luminance Cameras
 - Software automatically adjusts
 Luminance Camera variables

Light Level (cd/m2)	24.1, 15.6, 7.99, 1.87
Camera Gain (dB)	24, 21, 18, 15, 12, 9, 6, 3, 0, -2.25
Camera Shutter (ms)	267, 213, 159, 105, 51, 41, 36, 31, 26, 21, 16, 11, 6, 1
4 L 10 C	ight levels Bain values chosen

x 14 Shutter values chosen

560 images captured by Luminance Camera

Calibration - Procedure

Overlay of images completed automatically through software

Pixel analysis

Positive relationship of Luminance Camera grayvalue and gain

Positive relationship of Luminance Camera grayvalue and shutter

Level of pixel saturation (by gain)

=

Calibration Slope for each gain and shutter combination

Photometer Luminance Luminance Camera grayvalue

Calibration factor similar across light intensities

Impact of spectral distribution of luminaire

Calibration - Discussion

- Multiple cameras calibrated to photometer
- Rapid method developed
 - Automated
 - Image capture
 - Overlay of images
 - Calculation of calibration factors for multiple gain and shutter combinations
- Spectral distribution of light source impact on calibration process

Goals

- 1. Calibrate a digital video camera to a photometer
 - Develop rapid method of image capture for calibration
- 2. Develop working system for dynamic video capture
 - Determine optimal manual camera settings or allow automatic, camera-determined settings
- 3. Determine the level of repeatability and reproducibility (R&R) of the working system
- 4. Compare results of the working system in a dynamic environment

Dynamic Evaluation - Procedure

- Vehicle equipped with 2 Luminance Cameras manually & auto-configured
- Highway, rural, and downtown areas driven
- Capture images simultaneously at ~4fps
- Select gain and shutter settings for manual camera

Dynamic Evaluation - Procedure Camera Setting Selection

Impact of gain on image noise level

Dynamic Evaluation - Procedure Camera Setting Selection

Impact of shutter on image

Dynamic Evaluation - Procedure Camera Setting Selection

Estimation of maximum luminance

Darke ima	age							⊦ s	High pixel saturation					
	SHUTTER (ms)													
GAIN (dB)	1	6	11	16	21	26	31	36	41	51	105	159	213	267
-2.25	899.4	172.6	96.2	66.6	48.4	40.6	34.7	30.1	26.5	21.7	10.8	14.0	6.8	7.3
0	732.1	120.8	69.1	47.2	39.3	32.2	25.9	23.2	20.7	15.8	7.8	5.4	3.6	3.0
3	477.8	89.3	49.2	34.9	26.8	21.7	19.3	15.0	14.0	12.5	5.5	3.5	2.7	2.2
6	332.8	64.0	35.1	24.5	19.4	15.2	13.3	12.6	9.9	7.7	3.7	2.5	1.9	1.6
9	214.1	40.6	23.4	17.6	12.6	10.0	9.6	7.7	6.1	5.5	2.8	1.7		
12	165.4	33.6	18.6	12.0	9.7	7.5	6.1	5.6	5.2	3.9	2.0			
15	107.3	22.9	12.7	9.8	6.8	5.4	4.4	3.7	3.2	2.7	1.7			
18	81.2	14.8	8.2	6.2	3.9	3.2	2.5	2.4	2.0	1.8				
21	56.1	12.1	6.9	3.8	3.3	2.6	2.2	1.8	1.8					
24	41.8	7.0	5.2	2.4	2.0	1.8	1.8	1.7						

Dynamic Evaluation - Results

Manual

Automatic

High presence of blurring and saturation with auto configuration

Dynamic Evaluation - Discussion

- Auto-enabled
 - Blur
 - Oversaturation
- Manually enabled gain and shutter
 - Appropriate combinations found for multiple road settings
 - Ex. Downtown area \rightarrow low shutter

Goals

- 1. Calibrate a digital video camera to a photometer
 - Develop rapid method of image capture for calibration
- 2. Develop working system for dynamic video capture
 - Determine optimal manual camera settings or allow automatic, camera-determined settings
- 3. Determine the level of repeatability and reproducibility (R&R) of the working system
- 4. Compare results of the working system in a dynamic environment

R & R Evaluation

- <u>Repeatability</u> level of data consistency over time
- <u>Reproducibility</u> level of data consistency among different users
- 1. Perform multiple trials of data collection
- 2. Measure variance in data
- 3. Where is variance found?
 - In device/camera = repeatability
 - In user of device/camera = reproducibility
 - < 10% → "acceptable" variance</p>
 - 10-30% \rightarrow "may be acceptable"
 - > 30% → "unacceptable"

Automotive Industry Action Group (AIAG). (2002). Measurement systems analysis (3rd ed.)

R & R Evaluation - Procedure

- Environment without overhead lighting selected
- Targets/objects of interest displayed for measurements
- Luminance Cameras equipped in vehicle
- Reproducibility
 - 3 drivers/users parking car, illuminating environment
- Repeatability
 - 2 cameras, manually set
 - Multiple images taken
- Calculated mean luminance of selected targets

R & R Evaluation - Results

R & R Evaluation - Results

Selected area of pavement

Camera variance

< 10% "acceptable".

Variance among users

< 10% "acceptable"

R & R Evaluation - Discussion

- Luminance Camera performance
 - Reliable across time
 - Reproducible among users
- Considerations to prevent oversaturation
 - Targets/objects of interest
 - Camera settings

Goals

- 1. Calibrate a digital video camera to a photometer
 - Develop rapid method of image capture for calibration
- 2. Develop working system for dynamic video capture
 - Determine optimal manual camera settings or allow automatic, camera-determined settings
- 3. Determine the level of repeatability and reproducibility (R&R) of the working system
- 4. Compare results of the working system in a dynamic environment

Dynamic Roadway Comparison - Procedure

- Vehicle equipped with photometer & Luminance Camera
- Drive public roads
 - Luminance Camera Continually capture video
 - Photometer Stop vehicle, capture image of scene
- Corresponding images later matched
 - Targets/objects of interest selected (pavement markings)
 - Mean luminance of targets calculated

Dynamic Roadway Comparison - Results

Photometer image

Dynamic Roadway Comparison - Discussion

- Successful comparison of photometer to Luminance Camera
- Spectral distribution issues are evident

Conclusions

- Rapid method of camera calibration developed
- Cameras calibrated to multiple settings (to allow for different environments)
- Repeatability and Reproducibility of the camera system evaluated
- System evaluated in dynamic environment

Future Steps/Limitations

- Calibration improvements
 - Diffuse calibration surface
 - Photopic filter
 - Decrease spectral impact
 - Better indication of what human eye sees
- Dual camera approach in order to capture wide range of luminance in environment
- Methods to reduce camera temperature/decrease image noise