Visibility Modeling from a Heavy-Vehicle OEM’s Perspective

Andrew Krum

Navistar, Inc.
Human Factors and Ergonomics Group
19th Biennial TRB Visibility Symposium
Virginia Tech Transportation Institute
May 12th – 14th, 2009
Introduction
Balancing the outside world’s needs (exo) against the driver/vehicle’s needs (endo)

- How do the avoidance/guidance objects in the world effect the driver’s decisions?
 - Choice to start/stop
 - Choice to change direction
 - Choice to take evasive maneuvers
- How do the driver’s decisions effect the objects in the world?

The emerging technologies for collision avoidance and drive assistance hold great promise for the future but will not be discussed in this modeling overview.

Even in the case where sensor systems provide the best reaction times or control strategies, observation of traffic information, routing information, and object avoidance all still rely primarily on a clear view by the human eye.

Therefore, it is critical to know what the driver(s) of a 40 ton vehicle can see.
Variability in one vehicle’s configuration (ProStar) that affects visibility modeling.
• Variability in one vehicle’s configuration (ProStar) that affects visibility modeling
 – Defining the orientation of the outside world is critical to measuring the driver’s internal view

Visibility Modeling from a Heavy-Vehicle OEM’s Perspective
• Variability in driver preferences that affect visibility modeling within one vehicle configuration
 – Driver size (e.g. 5th %ile Female to 95th %ile Male Sitting Eye Height)
 – Seat position fore-aft: 185 to 226 mm horizontal adjustment available
 – Seat position vertical: up to 150 mm vertical adjustment available
 – Preferred backrest angle: typically 10 to 26 degrees rear of vertical
 – Predicted versus real driver back posture
Benjamin Carpenter, 21, was crossing a Michigan highway in his wheelchair when he became stuck in a tractor-trailer’s grille and pushed for miles before the unknowing driver was pulled over, police said on Thursday. Carpenter escaped unharmed, saying, “It was quite a ride,” police said.

Carpenter was attempting to cross on Wednesday when the light turned green and his wheelchair became hooked onto the front grille of the truck, which reached 50 mph during the 4-mile trip down Red Arrow Highway, Michigan State Police Trooper Michael Sinke said witnesses reported.

When the truck finally was stopped, the driver didn’t believe officers until he stepped from his cab and saw for himself. “When he saw us, he was like, ‘What’s going on?’” Morton said. “The truck driver had no idea,” Sinke said. “[He] was in a state of shock.”
Heavy Vehicle Environment
Non-Motorist Right-Turn Fatalities

Non-motorist location at decision point for truck driver in right-turn crashes was coded from police accident reports.

In about 2/3 of the cases, the non-motorist was on the sidewalk or shoulder to the right of the cab, in front of, or at the right front of the cab immediately prior to the truck driver beginning the turn.

16 of 70 cases had insufficient information and are excluded from the percentage calculations.

“Prioritizing Improvements to External Vision for Truck Drivers: Results from Crash Data, Experimental Studies, and Simulations”
By: Matthew P. Reed, Daniel Blower, Michael J. Flannagan
Priorities for Vision Improvements

1. The area immediately to the right of the cab extending about one lane width from the side of the vehicle
2. The entire right side of the vehicle, extending to the rear of the trailer
3. The area directly behind the truck or trailer
4. The area directly in front of, and to the right-front of, the cab

Rationale provided in referenced report.

“Prioritizing Improvements to External Vision for Truck Drivers: Results from Crash Data, Experimental Studies, and Simulations”
By: Matthew P. Reed, Daniel Blower, Michael J. Flannagan
North American
Direct and Indirect Visibility Modeling
Standards and Processes
DEFINE THE ORIGIN—The polar plot origin (Ex, Ey, Ez) in the vehicle coordinate system may be the Eyellipse centroid, left or right Eyellipse centroid or any vision origin point defined by the user.
Application Note: “This environment can then be analyzed to determine what the driver is capable of seeing. It should be noted that one of the most important factors affecting the driver’s field of view and the ability to make valid vehicle/design comparisons is the location of the driver’s eyepoint.”

SAE J1750 Issued MAR95, pg 18
SAE J941 Revised: Oct 2008

- **Eyellipse**: “A contraction of the words eye and ellipse used to describe the statistical distribution of eye locations in three-dimensional space located relative to defined vehicle interior reference points.”
- In other words: Boundary zones surrounding many different possible eye locations.
North American Standards

- Tied to one population US, over 20 years outdated with varying gender ratios

- Tied to ATRP seating h-point process which was issued in 1985 and reaffirmed several times, most recently December 1998.
North American Standards

Visibility Modeling from a Heavy-Vehicle OEM's Perspective

- SAE J1050 Issued: Rev Jan 2003

FIGURE 10—THE RANGE OF HORIZONTAL AMBINOCULAR FIELD OF VIEW FOR A GROUP OF DRIVERS USING EYE ROTATION AND HEAD TURN.

FIGURE 11—RANGE OF VERTICAL FIELD OF VIEW FOR A GROUP OF DRIVERS.

FIGURE C1—METHOD FOR DETERMINING A PILLAR OBSTRUCTION ANGLE.
FMVSS 111: Rearview Mirrors

“S3. Application. This standard applies to passenger cars, multipurpose passenger vehicles, trucks, buses, school buses and motorcycles.”

FMVSS 111: Truck Mirrors

“S8.1 Each multipurpose passenger vehicle and truck with a GVWR of 11,340 kg or more shall have outside mirrors of unit magnification, each with not less than 323 cm² of reflective surface, installed with stable supports on both sides of the vehicle. The mirrors shall be located so as to provide the driver a view to the rear along both sides of the vehicle and shall be adjustable both in the horizontal and vertical directions to view the rearward scene.”

Short and Sweet...
• FMVSS 111: School Bus Mirrors

 “(b) Includes one or more mirrors which together provide, at the driver’s eye location, a view of: (1) For the mirror system on the right side of the bus, the entire top surface of cylinder N in Figure 2, and that area of the ground which extends rearward from cylinder N to a point not less than 61 meters from the mirror surface…”

Fields of View Defined
GLOBAL
Direct and Indirect Visibility Modeling
Standards and Processes
• **ECE 46-02: Truck**
 - 6.1.2.2.1. The reflecting surface of a mirror must be either flat or spherically convex. Exterior mirrors may be equipped with an additional aspherical part provided that the main mirror fulfils the requirements of the indirect field of vision.

<table>
<thead>
<tr>
<th>Vehicle Category</th>
<th>Mirror Class</th>
<th>Mirror Type</th>
<th>Min number of mirrors</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2>7.5T</td>
<td>I</td>
<td>Interior</td>
<td>Optional (No requirements for field of view)</td>
</tr>
<tr>
<td></td>
<td>II and III</td>
<td>Main (Large)</td>
<td>1 on driver’s side, 1 on passenger’s side (Class III is not permitted)</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>Wide Angle</td>
<td>1 on driver’s side, 1 on passenger’s side</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>Close proximity</td>
<td>1 on passenger’s side, optional on driver’s side.</td>
</tr>
<tr>
<td></td>
<td>VI</td>
<td>Front</td>
<td>Compulsory 1 front mirror</td>
</tr>
<tr>
<td>N3</td>
<td>I</td>
<td>Interior</td>
<td>Optional (No requirements for field of view)</td>
</tr>
<tr>
<td></td>
<td>II and III</td>
<td>Main (Large)</td>
<td>1 on driver’s side, 1 on passenger’s side (Class III mirror is not permitted)</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>Wide Angle</td>
<td>1 on driver’s side, 1 on passenger’s side</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>Close proximity</td>
<td>1 on passenger’s side, optional on driver’s side.</td>
</tr>
<tr>
<td></td>
<td>VI</td>
<td>Front</td>
<td>Compulsory 1 front mirror</td>
</tr>
</tbody>
</table>
- ECE 46-02: Truck, Class II Mirror Example
 - Field of vision zone for Class II Mirrors is the closest system to the FMVSS 111 unit-magnification mirrors, but the field of vision requires a very large flat mirror to qualify.
 - FMVSS Truck and ECE 46-02 Vehicle Class N2/N3 mirror requ.'s are in direct conflict.

"Abinocular vision" means the total field of vision obtained by the superimposition of the monocular fields of view of the right eye and the left eye (See Figure 2 below).

Figure 4
Field of Vision of Class II Mirrors
[15.2.4.6] “Front” mirror:

The field of vision must be such that the driver can see at least a flat horizontal portion of the road, which is bounded by:

1. One traverse vertical plane through the outermost point of the front of the vehicle-cab,
2. one traverse vertical plane 2,000 mm in front of the vehicle,
3. one longitudinal vertical plane parallel to the longitudinal vertical median plane going though the outermost side of the vehicle at the driver’s side and
4. one longitudinal vertical plane parallel to the longitudinal vertical median plane 2,000 mm outside the outermost side of the vehicle opposite to the driver’s side.
5. The front of this field of vision opposite to the driver’s side may be rounded off with a radius of 2,000 mm.
However, if the driver can see, taking into account the obstructions by the A-pillars, a straight line 300 mm in front of the vehicle at a height of 1200 mm above the road surface and which is situated between a longitudinal vertical plane parallel to the longitudinal vertical median plane going through the outermost side of the vehicle at the driver’s side and a longitudinal vertical plane parallel to the longitudinal vertical median plane 900 mm outside the outermost side of the vehicle opposite to the driver’s side, a front mirror of Class VI is not mandatory.
State Standard of the Russian Federation
GOST R 51266-99: “Forward View from the Driver’s Seat”

Forward view is determined by the following parameters specified in figure 1:
- dimensions and arrangement of the normative zones A and B of the windscreen;
- wiping degree of the normative zones A and B of the windscreen;
- blind zones created by dividing posts of the windscreen;
- blind zones of the normative view field II.

Forward View Standard Summary

Origin (V) and Rotation (P) Points
State Standard of the Russian Federation
GOST R 51266-99: “Forward View from the Driver’s Seat”

A and B Windshield Zones

A-Pillar (Dividing Post) Blind Zones
State Standard of the Russian Federation
GOST R 51266-99: “Forward View from the Driver’s Seat”

Normative View Field “Pi” Planes

View Field “Pi” Projection onto Glass

View Field “Pi” Projection over Hood
Navistar Human Factors and Ergonomics
Group’s Visibility Processes and Tools
Measure drivers and create digital representations in Jack

Statistical Method: Principal Component Analysis
Visibility Origin: Class B Postural Prediction

Driver Accommodation (Postural Prediction)
Navistar HFE Modeling

- Vehicle Obstruction and External Object Targeting Tool
Navistar HFE Modeling

- Legacy Physical Validation
Navistar HFE Modeling

• ABC Zone Creation Tool
Navistar Visibility Analysis Examples
Navistar Visibility Analyses

• Bus Pedestrian and Vehicle Direct Visibility
 – Q: What areas along side the road should always be visible (i.e. direct visibility), while accounting for mirror location which provides optimal view of blind zones (i.e. indirect visibility)?

 – Factors
 • Range of driver eye points
 • Cab structure obstructions; gaps between obstructions that provide opportunities for spotting objects of interest
 • Height at which objects should be viewed (e.g. pedestrian: legs, torso, shoulder, age; vehicle: wheels, hood, roof)
 • Priority zones based on consequence (i.e. pedestrian vs. vehicle)

 – Goal:
 • Observe and avoid objects around cab structure and mirror obstructions
Navistar Visibility Analyses

- Bus Pedestrian and Vehicle Visibility
Bus Pedestrian and Vehicle Visibility

Navistar Visibility Analyses

- Small Female Eye Point Mirror System B
- Obscuration caused by transition of auxiliary glass to windshield
- Mirror Obscuration

Sm. Female View Point
• Direct vs. Indirect Visibility Zones and Crosswalks
 – Q: At what proximity can objects be observed next to a large severe service truck through day-light openings or in mirrors that demonstrate view of near-cab zones?

 – Factors:
 • Worst-case eye point (e.g. small female)
 • Day-light opening heights relative to driver eye heights
 • Indirect visibility views close to cab
 • Redundancy and overlap of direct-view and mirror-view zones
 • Hood and door obstructions
 • Conventional cab bumper location effect on passenger-side obstructions

 – Goal:
 • Identify possible increases/reductions in direct versus indirect visibility zones to maximize opportunity to view objects near passenger-side.
Navistar Visibility Analyses

- Direct vs. Indirect Visibility Zones and Crosswalks

Direct Visibility: Downward Visibility Sheets
Navistar Visibility Analyses

- Direct vs. Indirect Visibility Zones and Crosswalks (Different Vehicle)

Inference:
- The extreme right side pole is just visible to the driver.

Visible top edge of Pole

Pitch

1.2 m

0.5 m
Navistar Visibility Analyses

- Direct vs. Indirect Visibility Zones and Crosswalks
• Direct vs. Indirect Visibility Zones and Crosswalks
 – Flat unit magnification mirror not demonstrated, as focus of analysis is to determine where drivers might perceive motion of passing vehicles or pedestrians.

Legend:
- Peep Window
- Close Proximity Mirror
- Fender Mounted Mirror
- Wide Angle Mirror

Intersection of Mirror FOV Sheets with Ground

Indirect Visibility: Mirror View Overlap with Possible Direct View Window
FMVSS 111 Bus Mirror Indirect Visibility

Q: What level of consistency exists for indirect visibility mirror view testing between CAD simulation and physical processes?

Factors:

- Consistent eye point between physical and CAD cameras
- Consistent mirror head and reflective mirror face position

Goals:

- Define a repeatable and consistent process by which eye point (origin), body panels (obstructions), mirror faces (direct visibility targets), and test cylinders (indirect visibility targets) can be compared between physical and simulation parts.
- Create a simulation practice that can predict compliance with FMVSS requirements during vehicle architecture, body panel, and mirror concept part(s) development.
Navistar Visibility Analyses

- FMVSS 111 Bus Mirror Visibility

Figure 12. Screenshot of driver-side cross-view mirror

Figure 13. Snapshot of driver-side cross-view mirror
Navistar Visibility Analyses

• Traffic Light Upward Visibility
 - Q: What upward angle of DLO visibility is required for the driver to see the traffic light change and decide to modify vehicle speed?

 - Factors:
 • Worst-case driver eye-point (large male)
 • Maximum traffic light module and light color (i.e. red) height
 • Minimum traffic light module and light height
 • FMVSS 121 stopping requirement: 355 feet at 60 mph, 89 feet at 30 mph

 - Goals:
 • Stop fully loaded vehicle in front of intersection stop line or pass vehicle and trailer completely under light before light turns red on highest traffic light module.
 • When stopped at traffic light, view highest traffic light module with minimum amount of head and torso forward lean.
 • Maximize sun-shade size for appearance and shading performance
Navistar Visibility Analyses

- Traffic Light Upward Visibility

Special thanks to Steve Oliver from Navistar, Inc., Body Exteriors Group, who planned and performed this analysis.
Navistar Visibility Analyses

• Upward Visibility of Highway Signs vs. Sun Shading
 – Q: What is the location of a highway road sign with respect to the windshield day-light opening?
 – Factors:
 • Worst-case eye point (large male)
 • Height of cab and windshield with respect to road sign height
 • Blackout or other obstruction regions on windshield
 • Lateral location of road sign versus vehicle position: lane 1, lane 2, lane 3.
 • Velocity of vehicle which defines time to observe sign and read it
 – Goal:
 • Maximize sun blocking while minimizing obstruction of objects in world viewing through upward zone in day-light opening.
Navistar Visibility Analyses

- Upward Visibility of Highway Signs vs. Sun Shading

Lg. Male View, Vehicle in Lane 2, Sign in Motion

DOT, FHWA D8-1
“Weigh Station” Sign
• Bus Defog/Defrost Visibility Zones
 – Q: What areas on the day-light openings should be defrosted in a similar fashion to the windshield A and C zones due to bus glass and mirror systems?

 – Factors:
 • Eyellipse location and associated worst case tangencies
 • Height of bus and windshield with respect to sidewalk
 • Bus glass structures and door glass structures as obstructions
 • Location and height of pedestrians near bus and loading zone.

 – Goal:
 • Provide defog/defrost targets for all visibility zones needed for direct and indirect visibility of road vehicles and pedestrians.
Navistar Visibility Analyses

- Bus Defog/Defrost Visibility Zones: A and C Zones
Navistar Visibility Analyses

- Bus Defog/Defrost Visibility Zones: Mirror Zones, Pedestrian Loading Zone
Navistar HFE Next Steps

• Iteration of Tools

• Balancing Direct and Indirect Visibility

• Application of NIOSH/SAE Truck Driver Anthropometry Study
 – SAE Class B processes need to be updated
 – Update tools to match criteria
 – Provide benchmarking data for internal design standards and external recommended practices
Research Needs

• Any/all new processes, modeling to physical validation, vehicle benchmarking needed to support updating of SAE RP’s for Class B vehicles!!

• Validation of priority zones around vehicle for direct visibility metrics

• Definition of FMVSS mirror zones for truck and truck tractor indirect visibility

• Definition of FMVSS camera zones for truck and truck tractor indirect visibility

• Support the balance of direct and indirect visibility
 – European drivers often comment that ECE 46-02 mirrors are great for viewing old mirror blind spots, but create new direct visibility blind spots.

• Support novel solutions for front-of-cab and right-side of hood visibility aids for conventional vehicles.
Questions?