

Exo-Visibility Modeling – Working around the Endo

Ron Gibbons

Virginia IIII Tech

TRANSPORTATION INSTITUTE

Lighting and Driver Safety What we know...

- Box [1972] showed that the night/day accident ratio was 66% higher on unlighted freeways than on lit ones.
 - 0.5 lux appeared to be the illuminance level which provided the lowest accident rate
- Osner [1973] and Nishimori[1973] both showed a 56% reduction in accidents when lighting was added to a roadway.
- CIE Pub. Nº 93 "Road Lighting as an Accident Countermeasure" rigorously analyzed 62 lighting and accident studies from 15 countries.
 - "(S)tatistically significant results show reductions (in nighttime accidents) of between 13 and 75 percent."

Motor Vehicle Crashes – Implications of Darkness

Motor Vehicle Crashes – Implications of Darkness

Evaluating Impact of Light

Time of Year

Pedestrian Fatalities – Fall PM Return to **Standard Time**

Weeks Before and After Return to Standard Time

Exo-Visibility Modeling

- The Goal
 - We want to provide a visual environment that will allow every driver to see the objects they are required to see to travel safely.
- The Reality
 - Determining the what the driver is doing is nearly impossible
 - The Metrics to be used are widely varying

Visual Activity

- As drivers, the visual task is a very complex activity
 - Detection of road hazards
 - Lane keeping
 - Wayfinding
 - Monitoring of the instrument panel
 - Observing other drivers
 - Pedestrian Detection
 - Sightseeing?
 - Minding the other occupants in the vehicle
- We distribute our visual resources between all of these activities
 - We allot attention to the task which seems most demanding
 - Not necessarily the most important

Object Detection Process

- Visual Search
 - We have a standard search pattern as we drive
 - Looking for objects
 - Looking at signage
 - Following the road path
- Detection
 - Through the visual search, we find an object of interest
 - This detection can be peripheral
 - Spotted to the side as a result of motion or through high conspicuity
 - This detection can be foveal
 - Found through the visual search pattern
- Recognition
 - We attend to the objects of interest
 - This is a foveal task
- Reaction
 - We decide what the appropriate course of action
 - Braking, steering etc.

Object Visibility

Visibility with Glare

Visibility with Extreme Glare

Visibility of Objects

- We see objects based on their contrast to the background
 - This can either be color contrast or luminance contrast
 - In roadway lighting design, color is not considered
- The IES lighting design requirements are consensus standards based on experience
 - Lighting design can be performed based on illuminance, luminance or STV
 - The STV is a weighted average of a series of calculated Visibility Levels for a defined target
 - Current target is a flat 7" square with 50% reflectance which represents the smallest object which will collide with a vehicle

VL is calculated as:
$$VL = \frac{C_{act}}{C_{tb}} = \frac{L_{Target} - L_{Background}}{\Delta L_{tb}}$$

What is the Metric?

- Utilizing the Luminance Camera results we are looking at current metrics for analyzing roadway luminance visual Scenes
 - In addition to standard contrast we also calculate RSS, PSS, Doyle, and Michelson contrast metrics

Luminance Metrics

- Applying multiple contrast metrics to images
- Semi-automated process
 - 1. Accesses database of images for analysis
 - 2. User selects target
 - 3. Automatically calculates contrast metrics

Luminance Metrics

Results in luminance and contrast information

Mean Luminance of Target Mean Luminance of Background Weber Contrast Simple Contrast Michelson Contrast

0.677cd/m² 1.579cd/m² -0.571 2.331031 0.399585 0.961cd/m² 1.492cd/m² -0.356 1.552046 0.216315

Dynamic Driver Vision Model

- As an approach to establishing the visual needs of a driver, this research project considers the development of a model of driver vision.
- This model will establish the framework of the visual processes utilized by a driver.
- The needs of the driver in any situation can then be assessed and lighting, delineation and signage requirements established.

Visual Scene Assessment

- Traditionally, visual aspects of the road environment have been considered in "silos".
 - Roadway lighting design is performed independently from signage, delineation, and head-lighting.
 - Similarly, ambient lighting is not considered in definitions of require sign and light levels.
- Consideration must be made of the entire visual scene.
 - The visibility of all objects within a visual scene can be established by considering the cumulative detection probability

Cumulative Detection Probability

CDP

CDP = f(Photometry, Behavior, Objects)

Simple Model Characteristics

- Photometric
 - Contrast
 - Luminance
 - Glare
 - Ambient Lighting
 - Color
- Object
 - Size
 - Interest / Relevancy
 - Shape
 - Position
 - Movement
- Human Behavior
 - Eye Scanning Behavior
 - Fatigue
 - Attention
 - Age
 - Experience

The Dynamic Driver Vision Model

- The DDVM will consider all of the interactions in the characteristic categories
- The requirements and limitations for lighting, delineation and signage are established to ensure that the CDP reaches the required level
- As an extension of this model, Empirical Bayesean techniques may be used to evaluate the safety impact on the driver

 $y_{ni} \sim Poisson(\lambda_i)$

 $\log(\lambda_t) = \beta_0 + \beta_1 \text{lighting} + \beta_2 \log(AADT) + \beta_3 region + \cdots$

Experimental Method

- We will be gathering data in all three factor categories on closed test facilities at VTTI and TTI.
- Using an eye-tracker and a dynamic luminance camera, the detection of objects in the roadway will be measured.
 - Eye Glances will provide driver behavior
 - Luminance Camera will provide photometric characteristics
 - Experimental control will provide object characteristics

Experimental Design

Table 1. Data collection experimental design

		Test		
Factor	Levels	Location		
Age	2 Age Levels (Young and Older)	VTTI and TTI		
Lighting	2 levels of Overhead Lighting (No Lighting, High Pressure Sodium,)	VTTI		
Signage	2 Different Sign Types at Varying Locations	ТТІ		
Object	2 Varying object types at differing locations (Pedestrians, Roadway Obstacles)	VTTI and TTI		
Glare	2 Levels (Other vehicles Present\Absent)	VTTI		
Markings	2 different pavement Marking Types	TTI		

Eye Tracker

- Arrington Research Binocular Head Mounted Eye Tracker
- 3 Cameras, 2 IR emitters
 - Camera and IR on each eye
 - Center mounted scene camera

Eye Tracking Demo

Driving Transportation With Ferbiology

Downtown Eye Tracking

Luminance Camera

- 12 bit Point Grey Digital Firewire camera.
 - Calibrated against a Prometric Still Luminance Camera
- Varying shutter and gain values determine the range of luminance measured
 - 2 cameras can be coupled to increase dynamic response
- Individual images are stored for later analysis

triving Transportation Vith Technology

Luminance Camera

Objects

- Potential Objects for the investigation are:
 - Pedestrians
 - Bicycles
 - Tires
 - Animals
 - Off and on-axis objects
 - Surrogates
 - Other vehicles
 - Glare
 - Signs
 - Pavement Markings

Experimental Method

- Participants will be tested in a vehicle with the established instrumentation package,
- Driving on the test facilities, objects will be presented at the given locations
- Object detection will be self reported by the participant.
- The photometric characteristics of the object will be established at the point of detection using the luminance camera
- The detection mode and other visual behavior will be established using the eye tracker
- The driver will be unaware (waiting for IRB)
 - No dogs (too traumatic)

Virginia Transportation INSTITUTE

Model Framework

- Logistic Regression approach:
 - Logistic regression provides the research team with a tool that can incorporate both categorical and continuous variables
 - Also provides a probability of detection given the set of variables
 - Logit[P Y=1]= $\alpha + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_k$
 - Where detection: Y = 1

Model Framework

Parameters

	Probability	Distance	Age Group (Young and Older)	Luminance	Roadway Objects (Pedestrian, Roadway)	Glare (Present vs. Absent)
	Y = ?	500	Young	.5	Pedestrian	Present
	Y = ?	1000	Older	.3	Pedestrian	Present
	Y = ?	1500	Young	.15	Deer	Absent
i ili i an Viil ech	Y = ?	2000	X_1	X ₂	X ₃	X_4

Model Framework

- This method only provides a snapshot at a specific distance
- Requires calculating the probability given at distances of 250ft, 500ft, ...

Project Timing

- Completing the instrumentation package
- Initial model framework being established
- Participant testing will take place over the summer and fall
- Future Testing
 - Other factors
 - Fatigue
 - Attention
 - Ambient conditions