Exo-Visibility Modeling Working around the Endo

Ron Gibbons

Lighting and Driver Safety What we know...

- Box [1972] showed that the night/day accident ratio was 66% higher on unlighted freeways than on lit ones.
- 0.5 lux appeared to be the illuminance level which provided the lowest accident rate
- Osner [1973] and Nishimori[1973] both showed a 56\% reduction in accidents when lighting was added to a roadway.
- CIE Pub. No 93 "Road Lighting as an Accident Countermeasure" rigorously analyzed 62 lighting and accident studies from 15 countries.
- "(S)tatistically significant results show reductions (in nighttime accidents) of between 13 and 75 percent."

Motor Vehicle Crashes - Implications of Darkness

Vehicle occupant deaths, FARS, 1987-2003

Motor Vehicle Crashes - Implications of Darkness

Evaluating Impact of Light

Pedestrian Fatalities - Fall PM Return to Standard Time

Weeks Before and After Return to Standard Time

Exo-Visibility Modeling

- The Goal
- We want to provide a visual environment that will allow every driver to see the objects they are required to see to travel safely.
- The Reality
- Determining the what the driver is doing is nearly impossible
- The Metrics to be used are widely varying

Visual Activity

- As drivers, the visual task is a very complex activity
- Detection of road hazards
- Lane keeping
- Wayfinding
- Monitoring of the instrument panel
- Observing other drivers
- Pedestrian Detection
- Sightseeing?
- Minding the other occupants in the vehicle
- We distribute our visual resources between all of these activities
- We allot attention to the task which seems most demanding
- Not necessarily the most important

Object Detection Process

- Visual Search
- We have a standard search pattern as we drive
- Looking for objects
- Looking at signage
- Following the road path
- Detection
- Through the visual search, we find an object of interest
- This detection can be peripheral
- Spotted to the side as a result of motion or through high conspicuity
- This detection can be foveal
- Found through the visual search pattern
- Recognition
- We attend to the objects of interest
- This is a foveal task
- Reaction
- We decide what the appropriate course of action
- Braking, steering etc.

Object Visibility

Visibility with Glare

Visibility with Extreme Glare

Visibility of Objects

- We see objects based on their contrast to the background
- This can either be color contrast or luminance contrast
- In roadway lighting design, color is not considered
- The IES lighting design requirements are consensus standards based on experience
- Lighting design can be performed based on illuminance, luminance or STV
- The STV is a weighted average of a series of calculated Visibility Levels for a defined target
- Current target is a flat 7 " square with 50% reflectance which represents the smallest object which will collide with a vehicle
- VL is calculated as: $V L=\frac{\mathrm{C}_{\text {act }}}{\mathrm{C}_{\mathrm{th}}}=\frac{\mathrm{L}_{\text {Target }}-\mathrm{L}_{\text {Background }}}{\Delta \mathrm{L}_{\text {th }}}$

What is the Metric?

- Utilizing the Luminance Camera results we are looking at current metrics for analyzing roadway luminance visual Scenes
- In addition to standard contrast we also calculate RSS, PSS, Doyle, and Michelson contrast metrics

Luminance Metrics

- Applying multiple contrast metrics to images
- Semi-automated process

1. Accesses database of images for analysis
2. User selects target
3. Automatically calculates contrast metrics

Luminance Metrics

- Results in luminance and contrast information

Mean Luminance of Target
Mean Luminance of Background
Weber Contrast
Simple Contrast
Michelson Contrast

$0.677 \mathrm{~cd} / \mathrm{m}^{2}$	$0.961 \mathrm{~cd} / \mathrm{m}^{2}$
$1.579 \mathrm{~cd} / \mathrm{m}^{2}$	$1.492 \mathrm{~cd} / \mathrm{m}^{2}$
-0.571	-0.356
2.331031	1.552046
0.399585	0.216315

Dynamic Driver Vision Model

- As an approach to establishing the visual needs of a driver, this research project considers the development of a model of driver vision.
- This model will establish the framework of the visual processes utilized by a driver.
- The needs of the driver in any situation can then be assessed and lighting, delineation and signage requirements established.

Visual Scene Assessment

- Traditionally, visual aspects of the road environment have been considered in "silos".
- Roadway lighting design is performed independently from signage, delineation, and head-lighting.
- Similarly, ambient lighting is not considered in definitions of require sign and light levels.
- Consideration must be made of the entire visual scene.
- The visibility of all objects within a visual scene can be established by considering the cumulative detection probability

Cumulative Detection Probability

CDP

CDP $=f$ (Photometry, Behavior, Objects)

Simple Model Characteristics

- Photometric
- Contrast
- Luminance
- Glare
- Ambient Lighting
- Color
- Object
- Size
- Interest / Relevancy
- Shape
- Position
- Movement
- Human Behavior
- Eye Scanning Behavior
- Fatigue
- Attention
- Age
- Experience

The Dynamic Driver Vision Model

- The DDVM will consider all of the interactions in the characteristic categories
- The requirements and limitations for lighting, delineation and signage are established to ensure that the CDP reaches the required level
- As an extension of this model, Empirical Bayesean techniques may be used to evaluate the safety impact on the driver

$$
\begin{aligned}
& y_{n i} \sim \operatorname{Poisson}\left(\lambda_{i}\right) \\
& \log \left(\lambda_{t}\right)=\beta_{0}+\beta_{1} \operatorname{lighting}+\beta_{2} \log (A A D T)+\beta_{8} r \text { rgton }+\cdots
\end{aligned}
$$

Experimental Method

- We will be gathering data in all three factor categories on closed test facilities at VTTI and TTI.
- Using an eye-tracker and a dynamic luminance camera, the detection of objects in the roadway will be measured.
- Eye Glances will provide driver behavior
- Luminance Camera will provide photometric characteristics
- Experimental control will provide object characteristics

Experimental Design

Table 1. Data collection experimental design

Factor	Levels	Test Location
Age	2 Age Levels (Young and Older)	VTTI and TTI
Lighting	2 levels of Overhead Lighting (No Lighting, High Pressure Sodium,)	VTTI
Signage	2 Different Sign Types at Varying Locations	TTI
Object	2 Varying object types at differing locations (Pedestrians, Roadway Obstacles)	VTTI and TTI
Glare	2 Levels (Other vehicles Present\Absent)	VTTI
Markings	2 different pavement Marking Types	TTI

Eye Tracker

- Arrington Research Binocular Head Mounted Eye Tracker
- 3 Cameras, 2 IR emitters
- Camera and IR on each eye
- Center mounted scene camera

Eye Tracking Demo

Downtown Eye Tracking

Luminance Camera

- 12 bit Point Grey Digital Firewire camera.
- Calibrated against a

Prometric Still
Luminance Camera

- Varying shutter and gain values determine the range of luminance measured
- 2 cameras can be coupled to increase dynamic response
- Individual images are stored for later analysis

Luminance Camera

Objects

- Potential Objects for the investigation are:
- Pedestrians
- Bicycles
- Tires
- Animals
- Off and on-axis objects
- Surrogates
- Other vehicles
- Glare
- Signs
- Pavement Markings

Experimental Method

- Participants will be tested in a vehicle with the established instrumentation package,
- Driving on the test facilities, objects will be presented at the given locations
- Object detection will be self reported by the participant.
- The photometric characteristics of the object will be established at the point of detection using the luminance camera
- The detection mode and other visual behavior will be established using the eye tracker
- The driver will be unaware (waiting for IRB)
- No dogs (too traumatic)

Model Framework

- Logistic Regression approach:
- Logistic regression provides the research team with a tool that can incorporate both categorical and continuous variables
- Also provides a probability of detection given the set of variables

- Where detection: $\mathrm{Y}=1$

Model Framework

Probability	Distance	Age Group (Young and Older)	Luminance		Roadway Objects (Pedestrian, Roadway)
$\mathrm{Y}=?$	500	Young	.5	Glare (Present vs. Absent)	
$\mathrm{Y}=?$	1000	Older	.3	Pedestrian	Present
$\mathrm{Y}=?$	1500	Young	.15	Dedestrian	Present
$\mathrm{Y}=?$	2000	X_{1}	X_{2}		X_{3}

Model Framework

- This method only provides a snapshot at a specific distance
- Requires calculating the probability given at distances of $250 \mathrm{ft}, 500 \mathrm{ft}, \ldots$

Project Timing

- Completing the instrumentation package
- Initial model framework being established
- Participant testing will take place over the summer and fall
- Future Testing
- Other factors
- Fatigue
- Attention
- Ambient conditions

