

MICRO-SURFACING ON FRENCH HIGHWAYS : RECENT SUCCESSFUL EXPERIENCES

J-E. Urbain, E. Layerle

Eurovia Management Technical Department

Content

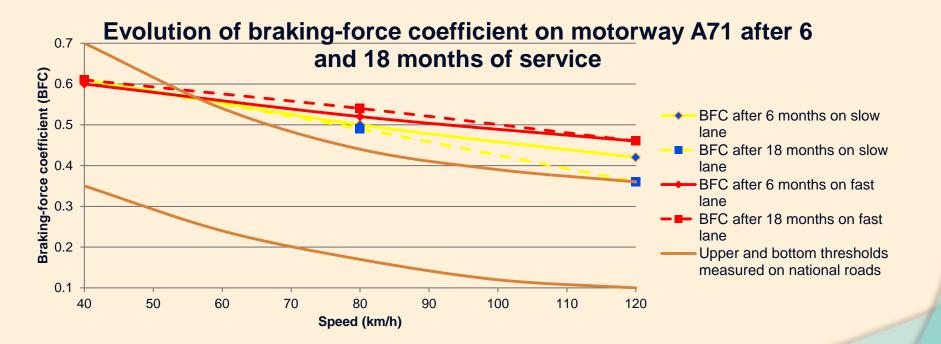
- 1. Introduction
- 2. Gripfibre ®
- 3. A 87 Construction
- 4. Environmental impact
- 5. Conclusions

Introduction

- The maintenance strategy of highway wearing course is an important issue.
- Hot and warm mix asphalt materials are able to cover all wearing course functions :
- Skid resistance
- Waterproofing
- Drainage

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

- Evenness
- Rolling noise
- But micro-surfacing has also adequate characteristics.
- So this process can be used instead of asphalt mixes.


Gripfibre ®

- What is Gripfibre ® ?
- A microsurfacing with gap-graded or continuous grading curve
- Composed of bitumen emulsion often modified by polymers, and of organic fibres

Gripfibre ® : First experimentations on highways

- Summer 1998 : 2 kms of the A71 highway were realized for maintenance works with Gripfibre® 0/10
- Measurements of braking force coefficient after 6 and 18 months

A 87 construction site

Characteristics of construction site :

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

- Located between Cholet North and Cholet South exits on the A 87 highway.
- From 10th to 20th September 2007.
- Realized by a special team of Eurovia South West.
- Heavy traffic : T1 (500 trucks per day).
- Support layer : semi-coarse asphaltic concrete applied in 2000.

- Characteristics of product :
- Using of dual layer applications 0/4 – 0:10 continuous grading :

- First layer : 0/4 grading with a bitumen emulsion modified by polymers.

- Second layer : 0/10 grading with fibres to facilitate the laying of the product and these fibres avoid segregation. Fibres allow Gripfibre® to have an improved ageing resistance.

A 87 construction site : Mix design

Formula	Microsurfacing 0/4 Pont Charron/Meilleraie		Microsurfacing 0/10 c Pont Charron	
	0/4 Pont Charron	60%	0/2 Pont Charron	40%
	2/4 La Meilleraie	40%	2/6 Pont Charron	40%
			6/10 Pont de Charron	20%
	Hydrated lime (ppc)	0.5	Hydrated lime (ppc)	0.5
Composition	Fibers (ppc)	-	Fibers (ppc)	0.07
Composition	Added water (ppc)	11	Added water (ppc)	10
	PmB Emulsion (ppc)	11.8	PmB Emulsion (ppc)	10.8
	Residual binder (ppc)	7.1	Residual binder (ppc)	6.48
	Maximum density (t/m3)	2.638	Maximum density (t/m3)	2.683
	Binder modulus	4.54	Binder modulus	4.24

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

A 87 construction site : Tests on dual-layer micro-surfacing

	Standard	Unit	Specifications	Micro- surfacing 0/4	Micro-surfacing 0/10 c
Working time :	MEI				
Workability time		s	≥ 90	90	110
Breaking time		min	≤ 20	4	4
Benedict cohesion :	NF EN 12274-4				
Cohesion at 30 min		kg.cm	≥ 20	23	23
Cohesion at 60 min		kg.cm	≥ 23	24	24
Abrasion WTAT :	MEI				
 Weight loss (T = 18°C, HR=55%) 		%	≤ 5	-	0
 Weight loss (T = 18°C, HR=100%) 		%	≤ 25	-	2

A 87 construction site

- Laying :
 - Laying controls have been carried out during the construction site.
 - During 6 days :
 - Road surface coated : 117 300 m²

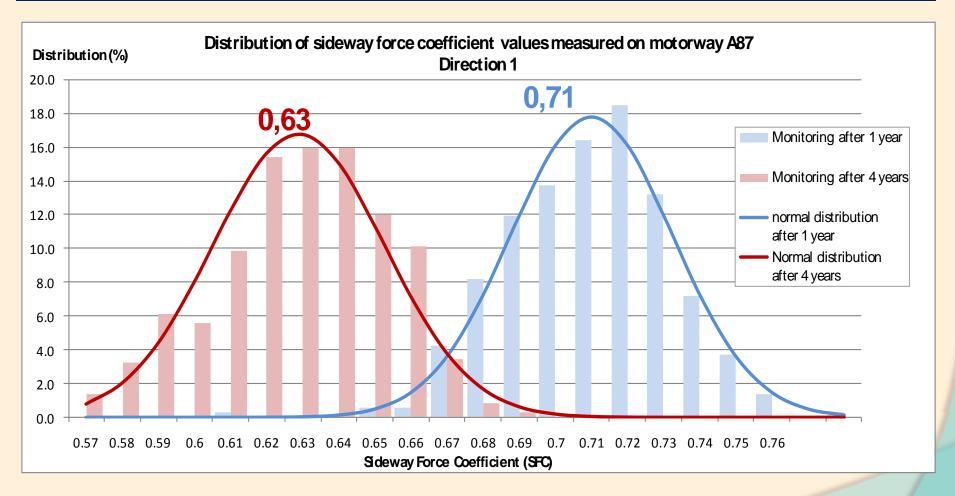
234 600 m² of microsurfacing

- Laying speed : between 1.5 and 2.5 km/h for a width of 3.8m

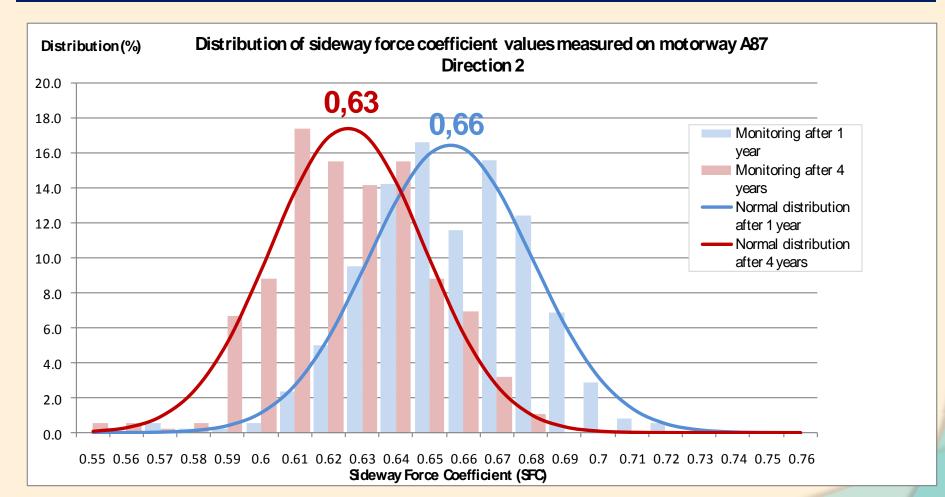
Process with a high rate, which is very appreciated on motorway construction site.

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

A 87 construction site : Monitoring of macrotexture after 1 year and 4 years


		Average	texture depth
		Sand patch values	Standard deviation
	Direction 1 : From Paris to La Roche-		
October 2008	sur-Yon	1.15 mm	0,05 mm
October 2008	Direction 2 : From La Roche-sur-Yon to		
	Paris	1.1 mm	0.08 mm
		Average	texture depth
		Average	Standard deviation
	Direction 1 : From Paris to La Roche-		
June 2008	sur-Yon	1.3 mm	0.11 mm
Julie 2008	Direction 2 : From La Roche-sur-Yon to	ection 2 : From La Roche-sur-Yon to	
	Paris	1.2 mm	0.13 mm
	Direction 1 : From Paris to La Roche-		
June 2011	sur-Yon	1.0 mm	0.10 mm
50112 2011	Direction 2 : From La Roche-sur-Yon to		
	Paris	1.0 mm	0.15 mm

A 87 construction site : Monitoring of sideways force after one year and four years


SURF 2012

		Sideways for	ce coefficient
		Average	Standard deviation
	Direction 1 : From Paris to La Roche-		
June 2008	sur-Yon	0.71	0.02
Julie 2000	Direction 2 : From La Roche-sur-Yon to		
	Paris	0.66	0.02
	Direction 1 : From Paris to La Roche-		
June 2011	sur-Yon	0.63	0.02
Julie 2011	Direction 2 : From La Roche-sur-Yon to		
	Paris	0.63	0.02

A 87 construction site : Evolution of skid resistance on highway A87 – Direction 1

A 87 construction site : Evolution of skid resistance on highway A87 – Direction 2

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Environmental impact of micro-surfacing

Difference			
Environmental indicator	Absolute value	%	100%
Depletion of ressources (ADP) (kg eq Sb)	-4,579	-55%	base proposition
Aggregate consumption (Tonnes)	-3,330	-59%	base proposition
Energy resources consumption (MJ)	-2,889,798	-62%	base proposition
Direct fuel oil consumption (Liters)	-61,909	-80%	base roposition
Overall transport (Tonnes km)	-479,754	-62%	base proposition
Emission of GHG climate change (kg eq CO2)	-182,444	-63%	base proposition
Atmospheric acidification (kg SO2 equ)	-1,932	-69%	base proposition
Air pollution (m3)	-21,720,265	-70%	base proposition
Water pollution (m3)	-109,549	-61%	base proposition
Photochemical ozone creation ozone (kg eq Eth)	-205	-67%	base proposition

Conclusions

WORLD ROAD

- Recently, Gripfibre® product was applied on sections of highways with high traffic level.
- This technique shows an advantageous environmental impact as well as very a good and durable skid resistance.

The performance of this product is still monitored.

Thank you for attention

J-E. Urbain, E. Layerle

Eurovia Management Technical Department

SURF 2012