30 KHz 3D Imaging Sensor for Pavement Surface Survey

Kelvin CP Wang and the Team

Oklahoma State University & WayLink <u>kelvin.wang@okstate.edu</u>

Presentation at the 2012 SURF Conference, Norfolk Marriott, Sept 20 2012

Acknowledgement

Federal Highway Administration Mike Moravec, Gary Crawford Mark Swanlund Tom Van LTPP Staff, Others UA, OSU, AR DOT, OK DOT

Acknowledgement

The TEAM

3D Laser Imaging for Pavements

- Mature Technology in Other Industries
 Indoor and Controlled Environment
- Paradigm Shift for Pavement Engineering
 - Potential to Cover Most if Not All Data Collection on Pavement Surface
- How to Obtain True 1mm 3D Visual Data at Highway Speed?
- How to Provide Multiple Solutions in One Pass that Meet Expectations?

Laser Line based 3D Triagulation Imaging Technique

http://www.adept.net.au/news/newsletter/200810-oct/3D_Camera.shtml

Sensor Design & Prototyping 2009-2010

Sensor Illustrations

Collected 3D Sample Images with the Prototyping System

A Major Limitation

- Operating 3D Profile Line Rate
 From 4000, 6000, to 8000/second
 - About 4mm to 6mm Resolution in the Longitudinal Direction at 60MPH (100KM/H)
 - Or ¼-inch Resolution in Long
 - Good Enough for Some Purposes; Not Sufficient

Research Approach

Use Multiple Sensors

- Increase 3D Profile Line Rate to 30,000/second
- Complete Coverage of Pavement Lane
 - True 1mm at Any Data Collection Speed up to 60MPH (100KM/H)

Data Rate & Power at 60MPH Single Computer Data Rate for 3D Only □ 4000x2x28000=224,000,000 bytes, 224 MB/sec before compression Continuous for a few hours non-stop Advantage Low Power < 1000 watts in all</p> Complete Coverage at True 1mm

First Deployment

First Deployment

First Deployment

Data Compression & Management

- Raw Data from All Sensors
 - Over 10GB per Mile at 60MPH (100KM/H)
- 2D Compression: JPG/JPG2000
- 3D Compression
 Proprietary Compression: over 10:1
- Production Data to Computer Storage: 1GB per Mile
- Relational Database Driven

Virtual Pavement

Imm Pavement Surface in All Three Dimensions

- High-Precision IMU
- Result
 - Grades
 - Horizontal Curves
 - Cross-Slope

Applications Now

- Cracking, Rutting, Macro-Texture (MPD, MTD)
- Safety Analysis: High-Friction, Rumble Strips, Hydroplaning/Grooving
- Virtual Surface for Visualization
- Future
 - Longitudinal Profiling
 - Comprehensive Evaluation of All Surface Distresses
 - Comprehensive Performance Metrics

Comparison on the Same Pavement

7000 3D Profiles/Sec

Comparison on the Same Pavement 28,000 3D Profiles/Sec

🔠 Information

	Value	Memo
\odot	343283	Pulse
\odot	0.235917 mi	Distance
	70	Pvmtlmg
Row	19	ROWImg
N 2 202	0	Rutting
66	0	Roughness
R	35.647625	Latitude
R	-97.424889	Longitude
R	3420.56 ft	Altitude
R	59.1 mph 🥌	Speed
	Imperial	Unit
	18.100 ft	RSPOffset
	WISDist	Coordinate
	50.000 ft	ROWOffset

60MPH

Conclusions

- Sensor Technology: Completed
- Biggest Challenges to the Team & Industry: Software Solutions
 - To make something beautiful, & also usable to pavement engineers
 - Confidence in quality of delivered final data