NEW METHODS FOR NETWORK LEVEL SURFACE CONDITION ASSESSMENT IN THE UK

Alex Wright, Nathan Dhillon, Stuart McRobbie
Technology Development Group, TRL, UK
Colin Christie, Highways Agency, UK
Traffic-speed surveys in UK

- Traffic-speed condition surveys on Trunk Roads (TRACS)
 - TRACS1 2000-2006
 - TRACS2 2006-2011

- Measure
 - Transverse profile
 - Longitudinal profile
 - Texture profile
 - Cracking
 - Locationally referenced using GPS

- Covers the Highways Agency network:
 - Lane 1 and Lane 2 annually
 - Slip roads over 2 years
 - Over 30,000km each year
An opportunity...

• A new 5 year “TRACS3” survey to commence from 2012
 • Assessment carried out of strengths and weaknesses of the current survey
 • Areas for improvement highlighted included:
 • The robustness of rutting measurements on challenging sites
 • The inability to measure raveling / fretting
 • The consistency of automatic cracking measurements
 • Research undertaken to address these
 • This presentation to consider rutting and raveling
Rutting

- TRACS2 measures multipoint laser transverse profile
 - 3.2m / 20 lasers
- Applies a simulated straight edge to calculate rutting
- Accuracy affected by
 - Road markings (in particular thermoplastic “rumble strip”)
 - Road studs
Rutting

- Accuracy also affected by driving line
- Result
 - Conflict with engineers
 - Conflict with survey contractor
 - Difficult to audit, Difficult to trend
- Can we improve this for TRACS3?

![Graph showing profile height vs. transverse position with markers for 'Incorrect' nearside straight edge and 'Correct' rut, and possible shape of missed rut offside straight edge.](image)
New technologies

- Provide more information
 - Wider, more points, more data
 - Should allow us to remove the road markings and accommodate driving line
 - But what is the “right amount” of data and how do we process it?

Phoenix PPS
1000 points / 4m

INO LRUT/LCMS
@1200 – 4000 points / 4m

RPS RoadScout
2048 points / 4m
Applying the technology

- The Phoenix system
- Provides 1000 point profiles every 25mm along the road

- First we remove the noise
 - Using a simple spike algorithm
 - Leaves some “edge” issues which we truncate
Road markings

• Many points measured on the line
 • Should simplify identification and removal?
• Not necessarily
 • Brightness and reflectivity affect height measurement (gain control)
 • Have seen in projected line systems as well
• Additional data would be useful
Amplitude response

- Amplitude reported by the laser will indicate marking
- Algorithm developed based on
 - Thresholding
 - Cleaning of spurious values
 - Longitudinal joining of continuous features
 - Removal of regions to the left and right of markings
Masking

- The resulting road marking mask leaves only valid transverse profile data to measure rutting
- However, still not quite right
Smoothing

- We have seen bias in rutting from high-resolution profilers
 - Red lines (high res). Yellow/grey/purple (traditional laser system)
- Due to the texture
- Have to smooth
 - We apply this longitudinally
Smoothing

- We average longitudinally over 10 profiles, after removing outliers
- Reduces bias to a negligible level
Performance
Performance

- Four runs
- The driver was asked to deliberately drive poorly in run 4!
Performance

- You cannot report it if you didn’t measure it
Performance

- Histogram of differences
- Road marking removed
- Smoothed
- High resolution laser
- 4m survey width

- Histogram of differences
- TRACS2
- 20 points
- 3.2m survey width
Raveling (Fretting)

- An important and increasing defect on UK roads
- Surveys carried out manually using CVI
 - Difficult to identify raveling
 - Difficult to quantify
 - Difficult to trend
 - Quality and repeatability issues
- TRACS2 surveys attempted to measure this using single line texture profile
 - Unreliably
- Can we improve this for TRACS3?
Raveling in a single line

- 1mm spacing texture profile
- TRACS2 employed the Stoneway algorithm
- Looks for missing stones that appear as “holes”
- Reports as total length affected
- Detailed investigation showed it works
 - When the raveling is in exactly that line
The raw data from traditional 16kHz point lasers – 4mm spacing at 50 mph

Can we use these to detect fretting?
Multiple line texture

- Resolution is insufficient to use Stoneway on thin surfacing systems
 - 10mm stones, 4mm data points
- But, we can obtain a “mat” or “grid” of the texture and assess in general:
 - Calculate the RMS texture depth in each line every 100mm
 - Localised high texture then highlights the presence of fretting
- But how to quantify?
Raveling using Multiple line texture

- Comparing the distribution of RMS values over the local 10m length with the surrounding 100m length
- Statistical parameters can describe the differences
 - Correlation coefficient
 - Correlation between Nearside/Middle/Offside regions
 - Comparison of percentiles
 - The proportion of values that are locally high compared with the global region
- Then we further analyse
 - By applying thresholds to each and reporting a scaled value
Performance

- Obtaining consistent reference data is very difficult
- The above reference obtained via manual surveys from a slow moving vehicle
- Good overall agreement
 - Localised differences
Performance

- Differences due to local false positives
- Checks are included but not always robust
- However, more of a problem on minor roads
Specifying a requirement

• Both the rutting and raveling research has identified the strength of higher resolution data
 • Rutting requires high resolution transversely
 • Raveling used high resolution data longitudinally

• However
 • The RMS data can be provided by the Phoenix laser,
 • By calculating the RMS data across the transverse profile

• One system could provide all of requirements
Summary

• With the introduction of TRACS3 in the UK, automated surveys of the surface condition of trunk roads are being updated
• We have developed improvements to rutting
 • TRACS3 will require transverse profiles with >100 points over a 4m width
 • The location of road markings is also required at the same resolution
 • The combined data will be used to calculate rutting.
 • The accuracy requirement will increase from 3mm (95%) to 2mm (95%).
• We have developed a method to identify raveling using multiple line surface texture measurements
 • With good general agreement with manual surveys
 • To calculate raveling TRACS3 will have to deliver texture in at least 7 lines
 • However, it will also be possible to use high resolution transverse profile to measure this defect
 • Research continues, to fine tune the algorithm