

FUSION OF LIDAR AND PROFILE FOR PAVEMENT CONDITION ASSESSMENT

Dean Wright, Nathan Dhillon, Alex Wright Technology Development Group, TRL, UK Colin Christie, Highways Agency, UK

LIDAR

- Light Detection and Ranging
- Laser technology capable of imaging a huge range of material types
- Precision range-finding using "time of flight" analysis
- Multi-directional scanning using spinning lasers
- To provide a 3D dataset of the surveyed asset
- This presentation: could we add LIDAR to our kit of asset and pavement assessment tools?

Collecting LIDAR data

- "Traditional" surveys are airborne e.g.
 - Helicoptor surveys
 @100-400m altitude
 - Surveying 60m "strips"
 - 50km/day
 - Claiming @5cm accuracy
- LIDAR, inertial and GPS data are combined
 - May use a local GPS base station
- Terrestrial surveys also undertaken using specialist vehicles

Common applications

- Pavement, roadside infrastructure, built and natural environments all mapped simultaneously
- For design and planning
 - Accurate 3D maps feed CAD design tools
- Assessing Earthworks
 - Slope instability
- Asset inventory

LIDAR surveys

- Airborne surveys are very useful, but
 - Specialist / expensive
 - Complex
 - Coverage issues can't measure underneath the assets
- In general
 - Focused on in-depth scheme/project level assessment (high value)
 - Accuracy may not be suitable for pavement surface/shape assessment, even for terrestrial surveys

Profile surveys

- Routine laser profile surveys
 measure
 - Transverse profile
 - Rutting
 - Water depth
 - Longitudinal profile
 - Ride quality (IRI)
 - Texture profile
 - High-speed skid resistance
 - Geometry
- Very accurate profile data
- Limited to a single lane per survey
- High efficiency (300km / day)
- Low cost

Terrestrial LIDAR (vehicle based)

- Collection by installing Velodyne LIDAR head on a Profile survey vehicle (HARRIS2)
- LIDAR system gives distance from the laser only
- Onboard GPS and IMU needed to relate LiDAR data to the surrounding environment
 - Conversion from the LIDAR space to the Survey space

LIDAR Space

- The Velodyne LIDAR provides a head rotation angle and 32 distances (one per laser in each bank)
- Azimuthal and rotational angles of the individual lasers are provided in a separate file
- The location of each observed point is determined w.r.t the base of the LIDAR unit

Vehicle space

- LIDAR head is mounted at a 23 degree angle
- Position and orientation of LIDAR head used to rotate the LIDAR space position into Vehicle space
- The (0, 0, 0) point is at the location of the inertial measurement unit
- Vehicle space is 'at rest' w.r.t vehicle
- Pitch, Roll and Yaw are not considered yet

Survey Space

- IMU provides Pitch, Roll, Yaw (Bearing), Location and Altitude
- (X, Y, Z) in vehicle space is rotated and translated to locate the point in survey space (E, N, Alt)
- Software tool developed to carry out these transformations
- Resulting data set is a 3D point cloud (x, y, z, r, g, b)

Results

• LIDAR space

Same data in Survey space

SURF 2012

Results

SURF 2012

Applications - measuring assets

- Easier to collect routinely, with potential to (e.g.)
 - Locate signs and signals.
 - Generate a geo-referenced database of signals and signs
 - Locate and measure bridges, gantries etc
 - Enhance right of way video data for quantitative assessment

Applications - pavement condition assessment

• E.g. Potential to

- Automatically identify the edges of the road.
 - Measuring road width and
 - Identify narrow locations automatically
- Measure overall shape
 - But still may not be suitable for condition assessment

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

How accurate is it (ideal conditions)?

Sphere	Riegl LIDAR measured (cm)			True Dimensions (cm)		
	Radius	Х	Y	Radius	Х	Y
A (20cm)	20	548	307	20	560	300
B (20cm)	20.2	549	114	20	560	120
C (10cm)	11.2	488	369	10	500	375
D (10cm)	11.7	464	175	10	500	210
E (10cm)	<u>N/A[2]</u>	N/A ⁵	N/A ⁵	10	500	55
F (10cm)	12.7	120	409	10	120	425
G (10cm)	11.9	140	98	10	140	100
H (20cm)	21.1	30	287	20	30	300

- Performance linked to quality of:
 - LIDAR head
 - IMU
 - Algorithms
 - Vehicle mounting
 - IMU / LIDAR coupling hardware
- In static conditions:
 - Overall we observe cm accuracy
- Therefore still restricted in application for pavement condition assessment?

How accurate is it (real application)?

- Assessment of bridge / gantry clearance
- Using the LIDAR Slice approach

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

How accurate is it in a real application?

	Closest Point	5 th Percentile	10 th Percentile	Reference
Height	5.152	5.156	5.159	5.05 (nearside) to 5.16 (offside)
Width	15.161	15.215	15.267	15.7 (at the road barrier) to 15 (at the bridge deck)

- Example on a sample bridge
- LIDAR results obtained using an algorithm to radially assess each slice
- Reference data using a laser distance tool on site
- Reasonable results few cm accuracy

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

An example "routine" application

- Manual assessment of barrier height and offset
- Using the LIDAR Slice approach
- 200km of M25 surveyed in 1 day
- Manually determine heights and offsets
 - Using software tool
 - A few day's analysis

An example "routine" application

WORLD ROAD

DE LA ROUT

- Automatic assessment of barrier height
- Using the LIDAR Slice approach
- Developed algorithms to estimate the height of the road and the barrier in each slice
- Processing takes a few minutes
- Compare with manual assessment of the LIDAR data
- >75% within 10cm

Can it be used for pavements?

WORLD ROAL WONDIALE DE LA ROUTE

922

921

920

- Profilers survey the lane
 - 20-1000 points across the lane
 - To 1/10th mm accuracy
 - Every 5-100mm along the road
- Can only assess in-lane condition
- Desirable to survey the whole carriageway to this level
 - Handling models
 - Water depth
 - Splash/spray

Fusion of LIDAR and profile

- Report the LIDAR and the profile data in the survey space
- A survey is made in each lane using the profiler and LIDAR
 - Cannot simply add together the proifle data due to drift and inacuracy
- A single lidar run selected to provide the baseline
- Each run of profile is "overlaid"
 onto this
- The profile is shifted to align using reference points identified in the LIDAR

Fusion of LIDAR and profile

- We get.....a single 3D dataset with
 - cm accuracy for the surrounding assets
 - mm accuracy for the pavement

- But we still have some problems!
 - Stepping still present
 - Need for manual intervention

Summary

- LIDAR is an established technology, used for planning and design
 - Often using airborne surveys
 - Little used in pavement assessment
- With developments in LIDAR, inertial GPS and cost reductions, it is a viable technique for installation on survey vehicles
 - With some advantages over airborne surveys
- Requires suitable equipment and algorithms to create the 3D data
- On its "own" it cannot yet replace high resolution profilers for pavement assessment
- But has some valuable potential in measuring assets adjacent to the pavement
- A multi-purpose vehicle combining LIDAR and profile could allow merging of the data to generate a full carriageway 3D profiler
- Further development of the approach is ongoing