

AUTOMATIC ASSESSMENT OF A ROAD SURFACE CONDITION

E. Coquelle, Colas J.-L. Gautier, Colas P. Dokladal, Mines ParisTech

The Road Eagle Colas (REC)

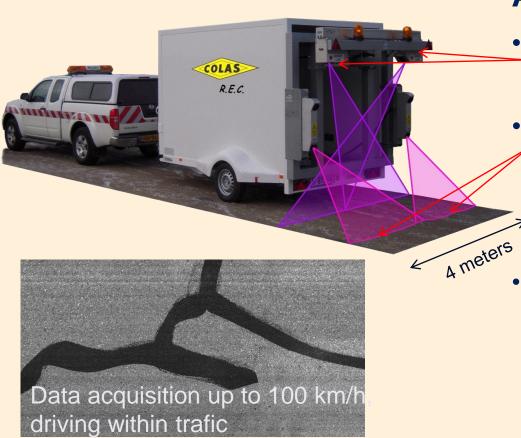
- The REC aims at determining a road surface condition, and predicting its structural remaining life
- The REC is based on:

A machine: road surface images and transverse profiles

An expert system:

WORLD ROAI

- > cracks and ruts detection
- resulting in degradation indexes and evolution rules


Road OK for the next 10 years

Repairing in 5 to 10 years

Repairing in 2 to 5 years

Repairing in 0 to 2 years

The Road Eagle Colas: an expertise based on several steps Step 1: REC Acquisition device

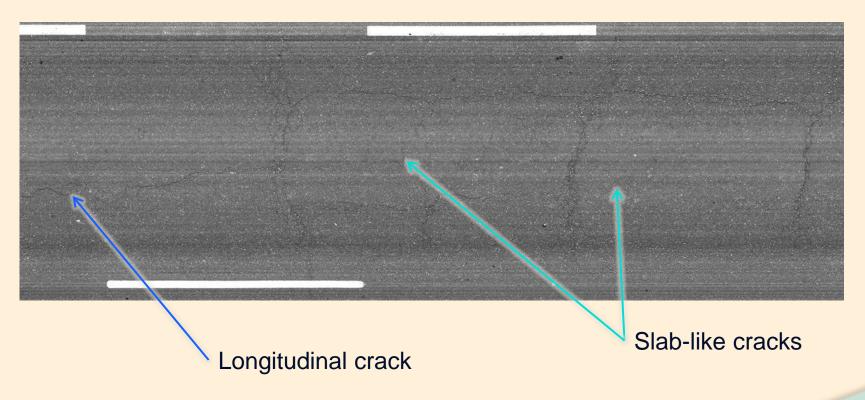
A trailer equipped with:

- High-definition camera (pitch: 1mm per pixel)
 - Transverse profilometer: 1 profile every 20 cm, 1 mm
 - accuracy in depth
 - Both provided by the Institut National d'Optique of Québec

VORLD ROAI

Step 2: Data processing

- Data are gathered in 10 meters long, 4 meters wide segments
- > Automatic detection of cracks, alligator cracking and sealings
- > Automatic detection of ruts (small and large radius) and subsidences


Assignment of a degradation severity index to every default

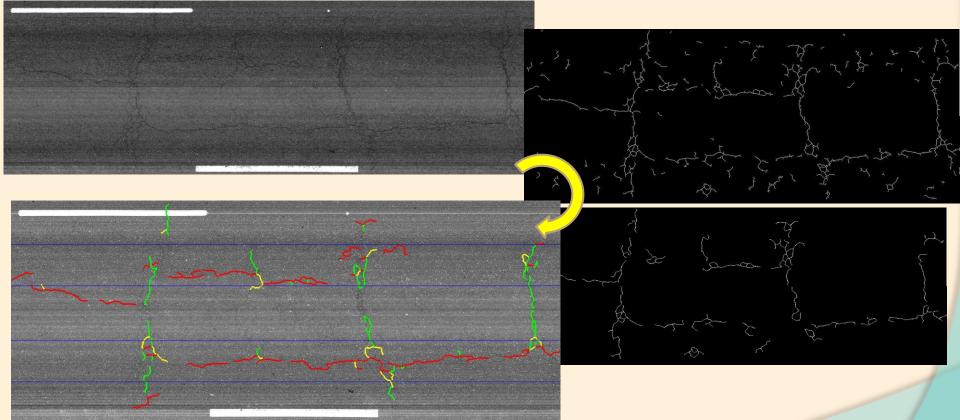
WORLD ROA MONDIALE DE LA ROUTE


Step 2: Data processing - images

Input: one image (4 x 10 meters)

Step 2: Data processing - images

- Processing contrainsts
 - High sensitivity: cracks as thin as 1~2 mm have to be detected
 - Few false detections (<5 %)
 - Computing time less than an hour per km (and per processor)



Step 2: Data processing - images

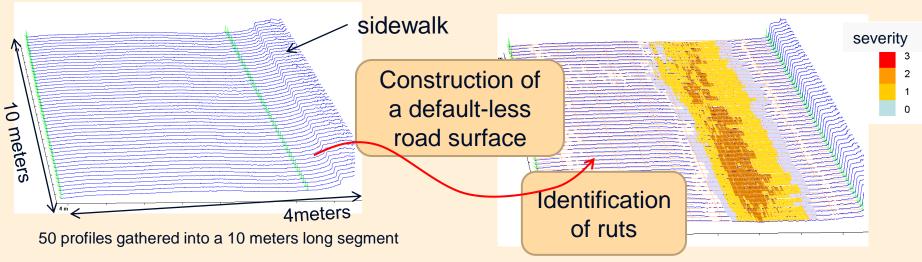
Processing: filtering, squeleton, classification...

SURF 2012

WORLD ROAD

Step 2: Data processing - images

Crack classification (according to their width) class 1 : less than 2 mm class 2 : between 2 and 5 mm class 3 : more than 5 mm class 4: double crack class 5: sealed cracks • Alligator cracking **Crack orientation** Assignment of a crack-based Longitudinal (red) degradation index ranging Transverse (green) from 1 to 4 **Other (yellow)** • **Crack position**


Inside/outside wheel paths...

longitudinal crack inside wheel path = mark 1 slab-like cracks = mark 2

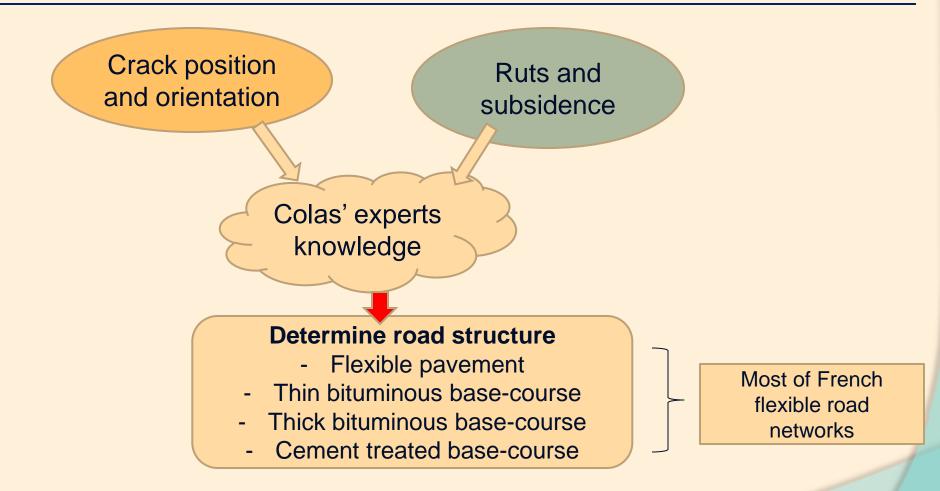
WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Step 2: Data processing - profiles

Classification into a 3 levels severity scale

- Detection of small and large radius ruts
- Detection of edge subsidence

Assignment of a profile-based degradation index

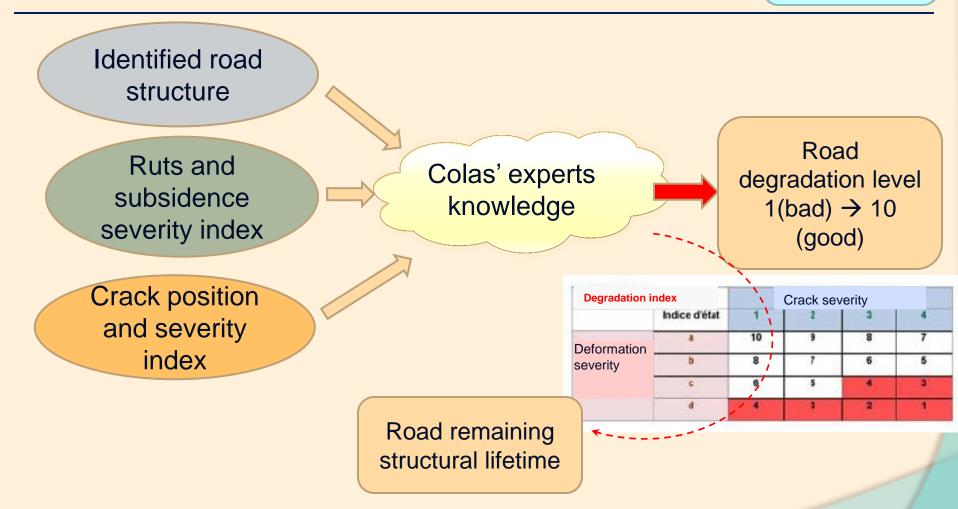


1. Identify

road structure

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Step 3: Structural evaluation


2. Rate road

structural

potential

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Step 3: Structural evaluation

3. Rate road

future

condition at 5

and 10 years

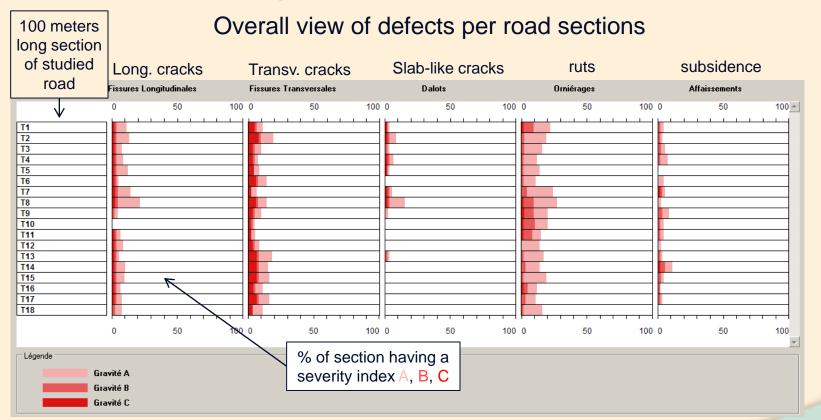
WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Step 3: Structural evaluation

Road Colas' experts degradation level knowledge $1(bad) \rightarrow 10$ **Degradation index** Crack severity (good) 10 9 8 7 Deformation 7 5 severity b 8 6 Road remaining 6 5 4 3 0 structural lifetime Degradation index ≥ 5 Degradation index Road OK for the next 10 Road OK today ≤4 years \rightarrow When will it fail ? Work on structure Repairing in 5 to 10 years within 2 years Apply evolution rules Repairing in 2 to 5 years to determine road Colas' Repairing in 0 to 2 years condition at 2, 5 and expert knowledge 10 years

Step 3: Structural evaluation

Software integration


WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

ETAV				
CST	120	ÉValuation Technique À Vue		Con la
Projet	Traitements	Paramétrages		?
Nom du projet :	Projet Test		Date début du travail : 1	5/03/2010
Nom du responsable d	e l'étude : Jean-Luc Gautier		Date fin du travail : 1	5/03/2010
Nom de la section :	Rue n*1		Version de l'étude : 1	
Commentaires :				
Répertoire des données d'entrée :	- Fichiers images fissuration : - Fichiers résultats fissuration	C:\A voir JLG\Mes dossiers\PR 53 - Evaluation Technique Visuelle\Traduction informatii : C:\A voir JLG\Mes dossiers\PR 53 - Evaluation Technique Visuelle\Traduction informatii		Parcourir Parcourir
donnees d'entree .	- Fichiers images déformation	s : ∫C:\A voir JLG\Mes dossiers\PR 53 - Evaluation Technique Visuelle\Traduction information	que\Synthèse - LIC\Données exempl	Parcourir
Répertoire de sauvega	rde des données et des résultats	de la section : C:\A voir JLG\Mes dossiers\PR 53 - Evaluation Technique Visuelle\Tra	aduction informatique\Synthèse - LIC\	Parcourir
Longueur de la section	1 (m) : 1200	Choix du tronçon type :		
Choix du milieu :	🖲 Urbain 🔿 Campagne	Travail par tronçons définis	Définir	
				➡ Suivant
Projet > Définir une nouvelle sect	tion			

Step 3: Structural evaluation

Software integration

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Step 3: Structural evaluation

Software integration

WORLD ROAD

Overall view of structural remaining life per road section

Road OK for the next 10 years

Repairing in **5 to 10 years**

Repairing in 2 to 5 years

Repairing in 0 to 2 years

Nom	X - 0 (Minoré)	X - 5 (Minoré)	X - 10 (Minoré)		X - 0 (Base)	X - 5 (Base)	X - 10 (Base)	É	X - 0 (Majoré)	X - 5 (Majoré)	X - 10 (Majoré)	
T1:0à100 m	5	3	3	$\overline{}$	5	3	3		5	3	3	< +7
T2: 100 à 200 m	5	3	2		5	3	2	2	5	3	2	
T3: 200 à 300 m	6	5	3	3	6	5	3	3	6	5	3	3
T4: 300 à 400 m	6	6	5	4	6	5	5	4	6	5	3	3
T5: 400 à 500 m	6	5	5	4	5	5	3	3	5	5	3	3
T6: 500 à 600 m	5	5	3	3	5	5	3	3	5	3	3	2
T7: 600 à 700 m	6	5	3	3	6	5	3	3	6	3	3	2
T8: 700 à 800 m	5	3	3	2	5	3	2	2	3	3	2	1
T9: 800 à 900 m	6	4	3	2	6	3	3	2	4	3	3	1
T10: 900 à 1000 m	6	6	4	3	6	6	4	3	6	4	4	2
T11: 1000 à 1100 m	6	6	4	3	6	6	4	3	6	6	4	3
T12: 1100 à 1200 m	6	5	5	4	6	5	5	4	6	5	3	3
T13: 1200 à 1300 m	5	5	3	3	5	5	3	3	5	3	2	2
T14: 1300 à 1400 m	5	3	3	2	5	3	3	2	5	3	3	2
T15: 1400 à 1500 m	5	5	3	3	5	3	3	2	5	3	3	2
T16: 1500 à 1600 m	6	5	3	3	6	5	3	3	5	5	3	3
T17: 1600 à 1700 m	5	5	3	3	5	3	3	2	5	3	3	2
T18: 1700 à 1720 m	6	5	5	4	6	5	5	4	6	5	3	3

COLAS R.E.C.

Conclusion

WORLD ROAD

The Road Eagle Colas

- Detects cracks, alligator cracking, sealings, ruts and subsidences (through dedicated algorithms)
- Based on Colas' expert knowledge of road evolution and degradation processes:
 - Assign degradation indexes based on the detection results
 - Establish evolution rules to predict road condition at 2, 5 and 10 years

The Road Eagle Colas is a complete tool to determine the remaining potential of road structures, based on visual inspection