The Iso test track: COLAS Group’s experience

Presented by
Vincent LAPEYRONIE
Colas CST
Outline

• ISO test track :
 • Definitions
 • Standard ISO 10844 : Evolutions
• Mix design
 • Standard to mix design
 • Two microphones impedance tube
• Experiences of Colas group Since 2006
 • Sacer, Colas, Sreg Subsidiary
• Conclusions
The Iso test track

- **Specific tracks**: Standard ISO 10844
 - Characterize the noise emissions
 - Cars or trucks
 - Tires (tires manufacturers)
- **Measurement of vehicle noises**
- **Same values between the different measurement sites**
 - Very high level of specifications for a relatively small area
Test track ISO 10844 standard: Evolutions

- Dense Asphaltic concrete
- September 1994
 - Straight bitumen
 - Informative sieve
 - Voids content ≤ 8% or $\alpha \leq 0.1$ on the 400-1600 Hz frequency (Core measurements)
 - Mean Texture Depth ≥ 0.4 (sand patch)
- February 2011
 - Modified binder allowed
 - $\alpha \leq 0.08$ on the 315-1600 Hz frequency (In situ Measurement)
 - Mean Texture Depth: Machine fulfilling ISO 13473-1 0.5mm± 0.2
Diagram ISO test Track

- Small size construction
- Geometrical parameter
Grading Curves

![Grading Curves Graph](image)

% Passing

Sieve (mm)

- lower grading envelope 1994
- upper grading envelope 1994
- lower grading envelope 2011
- upper grading envelope 2011
Mix Design

- Standard to mix design
 - Dense asphalt mix 0/6 to 0/10 mm
 - Rotary Shear Press (PCG 3 : EN 12697-10/ EN 12697-31)
 - Void content ≤ 8% at V80
 - Acoustic Absorption measured by Impedance Tube
 - Specimens from Gyropac Ø= 100mm (gyrator shear compactor)
 - Thickness : 30 à 55 mm
Impedance Tube

- Two microphones

Impedance Tube Method:

- Wideband sound signal, measure of acoustic pressure (FFT) and calculation of transfer function

- Stationary random signal which is split into an incident acoustic pressure P_i and a reflected acoustic pressure P_r

- P_i & P_r are determined by relation between the acoustic pressures in a 2 microphones impedance device.

Fonction de transfert entre les 2 microphones

$$H_{12} = \frac{P_2}{P_1} = \frac{e^{jkh} + \Re(-jkh)}{e^{jk(h+s)} + e^{-jk(h+s)}}$$

h: distance between micro-sample
k: wavenumber
s: space between 2 micros

Reflexion Factor

$$R = \frac{H_{12} - e^{-jks}}{e^{jks} - H_{12}}$$

Absorption factor

$$\alpha = 1 - |R|^2$$
Impedance Tube on core samples

- Used for ISO mix design
 - Laboratory or core samples
- Used for low noise asphalt mixes
- Different kind of fitting
Colas group experience Since 2006

- 2006-2007 : Sacer Sud Est Project
- 8 different mixes studied in laboratory
 - Sometimes outside from the envelope
 - ISO 10844 : 1994
- Test sections on the acceleration and braking lane
- Extraction of core samples
 - MTD, void content and absorption coefficient
Results Sacer Sud Est Project

• 2 kinds of compaction
• In situ measurements

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compaction mode</td>
<td>1,2</td>
<td>1,2</td>
<td>1,2</td>
</tr>
<tr>
<td>MTD</td>
<td>0,53</td>
<td>0,45</td>
<td>0,3</td>
</tr>
<tr>
<td>% voids</td>
<td>6,2</td>
<td>5,9</td>
<td>4,3</td>
</tr>
<tr>
<td>α (400-1600 Hz)</td>
<td>0,097</td>
<td>0,086</td>
<td>0,068</td>
</tr>
</tbody>
</table>

- Mix Design D
- Comply with the ISO 10844:1994

<table>
<thead>
<tr>
<th>Spec</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>> 30 mm</td>
</tr>
<tr>
<td>MTD</td>
<td>> 0,4 mm</td>
</tr>
<tr>
<td>Void Content</td>
<td>< 8%</td>
</tr>
<tr>
<td>15 core samples</td>
<td>Mean 38,8 mm</td>
</tr>
<tr>
<td>12 measurements</td>
<td>Mean 0,66 mm</td>
</tr>
<tr>
<td>4 core measured</td>
<td>6,7%</td>
</tr>
</tbody>
</table>
Colas group experience Since 2006

- 2008 : Colas IDFN Project

- 3 mixes
 - Sacer Sud Est mix, ISO Mix and outside from the envelope
 - ISO 10844 : 1994

- Test sections on the acceleration and braking lane

- Extraction of core samples
 - MTD, void content and absorption coefficient

- Specifications :
 - Void content & absorption coefficient
 - Using 10844:1994 and draft !!
2008 : COLAS IDFN

- Trial sections
<table>
<thead>
<tr>
<th></th>
<th>C03</th>
<th>C06</th>
<th>C07</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTD (mm)</td>
<td>0.36</td>
<td>0.54</td>
<td>0.41</td>
</tr>
<tr>
<td>Void Content</td>
<td>2.4</td>
<td>3.5</td>
<td>6.5</td>
</tr>
<tr>
<td>α (400-1600Hz)</td>
<td>0.061</td>
<td>0.069</td>
<td>0.075</td>
</tr>
</tbody>
</table>
Colas group experience Since 2006

- 2009: Sreg Sud Est Project

- Mix design
 - Local aggregate: problem with basaltic aggregate
 - High filler content sand
 - ISO 10844: 1994

- Trial sections allowed

- Extraction of core samples
 - MTD, void content and absorption coefficient
Worksite Screg Sud Est Project

- Drive lane and propagation area

<table>
<thead>
<tr>
<th></th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
</tr>
</thead>
<tbody>
<tr>
<td>α (315-1600Hz)</td>
<td>0,101-0,069</td>
<td>0,093-0,059</td>
<td>0,0113-0,055</td>
<td></td>
</tr>
<tr>
<td>Void content</td>
<td></td>
<td>9,6</td>
<td>11,1</td>
<td>6,5</td>
</tr>
<tr>
<td>MTD</td>
<td>0,37</td>
<td>0,46</td>
<td></td>
<td>0,45</td>
</tr>
<tr>
<td>α (315-1600Hz)</td>
<td>0,077</td>
<td>0,089</td>
<td></td>
<td>0,058</td>
</tr>
</tbody>
</table>
Colas group experience Since 2006

- 2011 : Colas Rhône Alpes Project
- 5 different mixes
 - Local aggregates and specific aggregates
 - Sometimes outside from the envelope
 - ISO 10844 : 2011
 - Laboratory : acoustic measurement with Impedance tube
 - Selection of mix design
- Test sections on the acceleration and braking lane
- In situ measurement
 - MTD and absorption coefficient
In situ impedance tube ISO 10844:2011

- Selection of mix design with laboratory impedance tube
 - 315-1600 Hz
- Validation with In situ impedance tube
 - ISO 13472-2
 - 250 – 1600 Hz

<table>
<thead>
<tr>
<th></th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
</tr>
</thead>
<tbody>
<tr>
<td>α(315-1600Hz)</td>
<td>0.091</td>
<td>0.098</td>
<td>0.083</td>
<td>0.102</td>
<td>0.139</td>
</tr>
<tr>
<td>MTD</td>
<td>0.29</td>
<td>0.32</td>
<td>0.37</td>
<td>0.4</td>
<td>0.54</td>
</tr>
<tr>
<td>α(250-1600Hz)</td>
<td>0.053-0.115</td>
<td>0.023-0.071</td>
<td>0.036-0.085</td>
<td>0.02-0.061</td>
<td>0.038-0.084</td>
</tr>
</tbody>
</table>
Conclusion

- **ISO test tracks:**
 - Small surface areas
 - Very technical with compromise between some criteria
 - MTD
 - Absorption
 - Preliminary work in laboratory
 - Trial sections recommended

- **Expertise of Colas group:**
 - 6 ISO test tracks since 2006
 - Recognized by several major vehicle and tire manufactures