

FURTHER INVESTIGATIONS ON THE WEIGHTED LONGITUDINAL PROFILE

Presenter: Roland Spielhofer

Austrian Institute of Technology, Vienna, Austria

Topics

- Introduction
- WLP calculation steps
- Deriving an evaluation scheme
- Evaluation of motorways
- Comparison with planograph for application in new work approval/acceptance test
- Conclusions

Longitudinal evenness evaluation ... an ongoing problem

E RIDE - SMOOTH AS A SWING

IT WAS NECESSARY

to devise a new term—"Centerpoise"—to fit an entirely new comfort ride in the Ford V-8 for 1935. As an automobile passes over rough roads, the car ends more up and down more than the car's center, in a tester-totter effect. Therefore back seat passengers especially have been bounced up and down, because they were scatted over or behind the rear atle. The new Ford Centerpoise Ride seats all passengers nearer the center of the car, which bounces least. As a result, back seat passengers receive a front seat ride. The graphs at the left record the movements of the same passenger's weight, up and down, in the rear seat of two Fords, one 1931—one 1935, travelling over an identical rough route at 30 miles per hour. Note how the 1935 ride is made smoother by Centerpoise—which Ford developed through three great changes described on the orst page. ... movement ... up and down in the rear seat ... on identical rough roads

1935 Ford Ad

Longitudinal evenness evaluation ... many approaches

- Many parameters/indices have been developed over the years
 - depending on a particular measurement system (e.g. bump integrator, planograph, ...)
 - depending on a "true profile"
 - geometric indices

- response type indices
- Arguments for/against indices
 - geometric indices are "more objective" than response-type indices
 - response-type indices reflect what drivers experience while they drive
 - response-type indices are speed dependent
 - limited wave band and variations in sensitivity due to transfer functions

Weighted longitudinal profile (WLP)

- A recent approach for longitudinal evenness evaluation
- Introduced in Germany in 2004

- Tries to combine the strengths of geometric and response type indices
- Currently, the calculation procedure is prepared to be integrated into prEN 13 073-5 ("Calculation of Longitudinal indices")
- Several research projects in Germany and Austria
- In Germany already included into national regulations ("TP-Eben")
- In Austria it will be integrated soon into national regulation ("RVS")

Weighted longitudinal profile (WLP) – computation

Step 1

- The longitudinal profile is transformed into spectral domain
- and related to a reference amplitude spectrum (characteristic)

Weighted longitudinal profile (WLP) - computation

Step 2

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

> The related spectrum (phase remains unchanged) is "scanned" completely by an octave-band filter, since human perception and vehicle dynamics resemble an octave-band filtering covering certain wavelengths according to the driven speed.

> > practical proceeding:

the spectrum between 0,2 and 102,4 m is divided into 9 octave bands

Weighted longitudinal profile (WLP) - computation

Step 3

- The 9 octave-band spectra are transformed back into space domain giving 9 octave-band filtered profiles.
- These 9 profiles are assembled together to the Weighted Longitudinal Profile according to their respective power contribution to the total power

Weighted longitudinal profile (WLP) - computation

Step 4 (last step)

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

- The Weighted Longitudinal Profile is characterized by 2 indices:
 - standard deviation "σ" (sigma)
 - range "Δ" (delta)

2 simple indicators

- σ for irregularities
- Δ for "local" features

$$\Delta/\sigma = 3 \dots 6 \dots > 10$$

"wavy" ... irregular ... impulsive

Weighted longitudinal profile (WLP) – examples

Periodical unevenness

Weighted longitudinal profile (WLP) – examples

Single obstacle

Deriving an evaluation scheme

- Mathematical relationship between WLP and PSD
 - G(Ω₀)
 - w* waviness slope of the reference PSD in loglog scale

SURF 2012

Deriving an evaluation scheme

- for $G(\Omega_0)$ there are already evaluation values in Germany (for motorways)
- w is set to w = 2.6
 - lower values (w ~ 2.2) would emphasize on longer wavelengths
 - higher values (w > 2.5) emphasize shorter wavelengths
- L_{min} = 0.5 m
- L_{max} = 50 m
- $G(\Omega_0) = 1 \text{ cm}^3 \dots \text{ target value}$

(current limits in Germany)

SURF 2012

• $G(\Omega_0) = 9 \text{ cm}^3 \dots \text{ threshold value}$

	target value	acceptance value	warranty value	warning value	threshold value
σ _{WLP} [mm]	4	6	7	9	13
Δ_{WLP} [mm]	26	36	42	54	78

Verification of evaluation scheme

German motorways (data from 2005/2006)

37,785 km Asphalt 13,856 km Concrete

SURF 2012

Rating of asphalt and concrete

- BA, BH, BU, BV Concrete
- AG, AS Asphalt

Rating of asphalt and concrete

- BA, BH, BU, BV Concrete
- AG, AS Asphalt

WLP for new work approval?

- Currently, on Austrian motorways a criterion for planograph/4 m straight edge exists
- Planograph cannot rate certain evenness problems
- What would happen if the criterion is changed to WLP?
- Prerequisites for a comparison
 - location of newly built sections
 - planograph results of these sections
 - WLP results of these sections

WLP for new work approval?

- Currently, on Austrian motorways a criterion for planograph/4 m straight edge exists
- Planograph cannot rate certain evenness problems
- What would happen if the criterion is changed to WLP?
- Prerequisites for a comparison
 - location of newly built sections well known
 - planograph results of these sections not centrally available
 - WLP results of these sections longitudinal profile has been measured during skid resistance acceptance test (with a vehicle that measures evenness and skid resistance at the same time)

WLP for new work approval?

- Currently, on Austrian motorways a criterion for planograph/4 m straight edge exists
- Planograph cannot rate certain evenness problems
- What would happen if the criterion is changed to WLP?
- Prerequisites for a comparison
 - location of newly built sections well known
 - planograph results of these sections not centrally available
 - WLP results of these sections longitudinal profile has been measured during skid resistance acceptance test (with a vehicle that measures evenness and skid resistance at the same time)

WLP for new work approval?

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

٠

Comparison of WLP and simulated planograph for 50 m sections

- Percentage of "positive" sections
 - Δ_{WLP} , σ_{WLP} better than acceptance value
 - simulated planograph: no deviation > 4 mm in section

WLP for new work approval?

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

Comparison of WLP and simulated planograph for 50 m sections

- Percentage of "positive" sections
 - Δ_{WLP} , σ_{WLP} better than acceptance value
 - simulated planograph: no deviation > 4 mm in section

Conclusions

- Weighted longitudinal profile is a versatile index for evenness evaluation
- Evaluation scheme is derived from a linearized PSD and is easily adaptable.
- No bias was observed when for the evaluation of different surface types
- WLP clearly differentiates the characteristics of asphalt and concrete pavements.
- Possible change to WLP as acceptance criteria needs more research (real vs. simulated planograph)
- WLP seems to be ready to be of use in Pavement Management Systems

Acknowledgements to

WORLD ROAD ASSOCIATION MONDIALE DE LA ROUTE

- Andreas Ueckermann
- for co-writing the paper
- Austrian Federal Ministry of Transport, Innovation and Technology
- German Federal Ministry of Transport, Building and Urban Development for funding our research projects

Thank you for your attention!

Roland Spielhofer – <u>roland.spielhofer@ait.ac.at</u> Andreas Ueckermann - <u>ueckermann@isac.rwth-aachen.de</u>